Difference between revisions of "2020 AMC 10A Problems/Problem 24"
Happykeeper (talk | contribs) (→Solution 5) |
Happykeeper (talk | contribs) (→Solution 5) |
||
Line 25: | Line 25: | ||
The conditions of the problem reduce to the following. <math>n+120 = 21k</math> where <math>gcd(k,3) = 1</math> and <math>n+63 = 60l</math> where <math>gcd(l,2) = 1</math>. From these equations, we see that <math>21k - 60l = 57</math>. Solving this diophantine equation gives us that <math>k = 20a + 57</math>, <math>l = 7a + 19</math> form. Since, <math>n</math> is greater than <math>1000</math>, we can do some bounding and get that <math>k > 53</math> and <math>l > 17</math>. Now we start the bash by plugging in numbers that satisfy these conditions. We get <math>l = 53</math>, <math>k = 97</math>. So the answer is <math>\boxed{1917}</math>. | The conditions of the problem reduce to the following. <math>n+120 = 21k</math> where <math>gcd(k,3) = 1</math> and <math>n+63 = 60l</math> where <math>gcd(l,2) = 1</math>. From these equations, we see that <math>21k - 60l = 57</math>. Solving this diophantine equation gives us that <math>k = 20a + 57</math>, <math>l = 7a + 19</math> form. Since, <math>n</math> is greater than <math>1000</math>, we can do some bounding and get that <math>k > 53</math> and <math>l > 17</math>. Now we start the bash by plugging in numbers that satisfy these conditions. We get <math>l = 53</math>, <math>k = 97</math>. So the answer is <math>\boxed{1917}</math>. | ||
==Solution 5== | ==Solution 5== | ||
− | You can first find that n must be congruent to <math>6\equiv0\pmod {21}</math> and <math>57\equiv0\pmod {60}</math>. The we can find that <math>n=21x+6</math> and <math>n=60y+57</math>, where x and y are integers. Then we can find that y must be odd, since if it was even the gcd will be 120, not 60. Also, the unit digit of n has to be 7, since the unit digit of 60y is always 0 and the unit digit of 57 is 7. Therefore, you can find that x must end in 1 to satisfy n having a unit digit of 7. Also, you can find that x must not be a multiple of three or else the gcd will be 63. Therefore, you can test values for x and you can find that x=91 satisfies all these conditions.Therefore, n is 1917 and <math>1+9+1+7</math>=<math>\boxed{ | + | You can first find that n must be congruent to <math>6\equiv0\pmod {21}</math> and <math>57\equiv0\pmod {60}</math>. The we can find that <math>n=21x+6</math> and <math>n=60y+57</math>, where x and y are integers. Then we can find that y must be odd, since if it was even the gcd will be 120, not 60. Also, the unit digit of n has to be 7, since the unit digit of 60y is always 0 and the unit digit of 57 is 7. Therefore, you can find that x must end in 1 to satisfy n having a unit digit of 7. Also, you can find that x must not be a multiple of three or else the gcd will be 63. Therefore, you can test values for x and you can find that x=91 satisfies all these conditions.Therefore, n is 1917 and <math>1+9+1+7</math>=<math>\boxed{((C)18}</math>. |
== Video Solution == | == Video Solution == |
Revision as of 23:48, 3 February 2020
Contents
Problem
Let be the least positive integer greater than for whichWhat is the sum of the digits of ?
Solution 1
We know that , so we can write . Simplifying, we get . Similarly, we can write , or . Solving these two modular congruences, which we know is the only solution by CRT (Chinese Remainder Theorem). Now, since the problem is asking for the least positive integer greater than , we find the least solution is . However, we are have not considered cases where or . so we try . so again we add to . It turns out that does indeed satisfy the original conditions, so our answer is .
Solution 2 (bashing)
We are given that and . This tells us that is divisible by but not . It also tells us that is divisible by 60 but not 120. Starting, we find the least value of which is divisible by which satisfies the conditions for , which is , making . We then now keep on adding until we get a number which satisfies the second equation. This number turns out to be , whose digits add up to .
-Midnight
Solution 3 (bashing but worse)
Assume that has 4 digits. Then , where , , , represent digits of the number (not to get confused with ). As given the problem, and . So we know that (last digit of ). That means that and . We can bash this after this. We just want to find all pairs of numbers such that is a multiple of 7 that is greater than a multiple of . Our equation for would be and our equation for would be , where is any integer. We plug this value in until we get a value of that makes satisfy the original problem statement (remember, ). After bashing for hopefully a couple minutes, we find that works. So which means that the sum of its digits is .
~ Baolan
Solution 4
The conditions of the problem reduce to the following. where and where . From these equations, we see that . Solving this diophantine equation gives us that , form. Since, is greater than , we can do some bounding and get that and . Now we start the bash by plugging in numbers that satisfy these conditions. We get , . So the answer is .
Solution 5
You can first find that n must be congruent to and . The we can find that and , where x and y are integers. Then we can find that y must be odd, since if it was even the gcd will be 120, not 60. Also, the unit digit of n has to be 7, since the unit digit of 60y is always 0 and the unit digit of 57 is 7. Therefore, you can find that x must end in 1 to satisfy n having a unit digit of 7. Also, you can find that x must not be a multiple of three or else the gcd will be 63. Therefore, you can test values for x and you can find that x=91 satisfies all these conditions.Therefore, n is 1917 and =.
Video Solution
https://youtu.be/tk3yOGG2K-s -
See Also
2020 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.