Difference between revisions of "2020 AMC 12A Problems/Problem 25"

(Solution 1)
(Solution)
Line 6: Line 6:
 
<math>\textbf{(A) } 245 \qquad \textbf{(B) } 593 \qquad \textbf{(C) } 929 \qquad \textbf{(D) } 1331 \qquad \textbf{(E) } 1332</math>
 
<math>\textbf{(A) } 245 \qquad \textbf{(B) } 593 \qquad \textbf{(C) } 929 \qquad \textbf{(D) } 1331 \qquad \textbf{(E) } 1332</math>
  
==Solution==
+
==Solution 1==
 
Let <math>1<k<2</math> be the unique solution in this range. Note that <math>ck</math> is also a solution as long as <math>ck < c+1</math>, hence all our solutions are <math>k, 2k, ..., bk</math> for some <math>b</math>. This sum <math>420</math> must be between <math>\frac{b(b+1)}{2}</math> and <math>\frac{(b+1)(b+2)}{2}</math>, which gives <math>b=28</math> and <math>k=\frac{420}{406}=\frac{30}{29}</math>. Plugging this back in gives <math>a=\frac{29 \cdot 1}{30^2} = \frac{29}{900} \implies \boxed{\textbf{C}}</math>.
 
Let <math>1<k<2</math> be the unique solution in this range. Note that <math>ck</math> is also a solution as long as <math>ck < c+1</math>, hence all our solutions are <math>k, 2k, ..., bk</math> for some <math>b</math>. This sum <math>420</math> must be between <math>\frac{b(b+1)}{2}</math> and <math>\frac{(b+1)(b+2)}{2}</math>, which gives <math>b=28</math> and <math>k=\frac{420}{406}=\frac{30}{29}</math>. Plugging this back in gives <math>a=\frac{29 \cdot 1}{30^2} = \frac{29}{900} \implies \boxed{\textbf{C}}</math>.
 +
 +
==Solution 2==
 +
First note that <math>\lfloor x\rfloor \cdot \{x\}<0</math> when <math>x<0</math> while <math>ax^2\ge 0\forall x\in \mathbb{R}</math>. Thus we only need to look at positive solutions (<math>x=0</math> doesn't affect the sum of the solutions).
 +
Next, we breakdown <math>\lfloor x\rfloor\cdot \{x\}</math> down for each interval <math>[n,n+1)</math>, where <math>n</math> is a positive integer. Assume <math>\lfloor x\rfloor=n</math>, then <math>\{x\}=x-n</math>. This means that when <math>x\in [n,n+1)</math>, <math>\lfloor x\rfloor \cdot \{x\}=n(x-n)=nx-n^2</math>. Setting this equal to <math>ax^2</math> gives
 +
<cmath>nx-n^2=ax^2\implies ax^2-nx+n^2=0 \implies x=\frac{n\pm \sqrt{n^2-4an^2}}{2a}</cmath>
 +
We're looking at the solution with smaller <math>x</math>, which is <math>x=\frac{n-n\sqrt{1-4a}}{2a}=\frac{n}{2a}\left(1-\sqrt{1-4a}\right)</math>. Note that if <math>\lfloor x\rfloor=n</math> is the greatest <math>n</math> such that <math>\lfloor x\rfloor \cdot \{x\}=ax^2</math> has a solution, the sum of all these solutions is slightly over <math>\sum_{k=1}^{n}k=\frac{n(n+1)}{2}</math>, which is <math>406</math> when <math>n=28</math>, just under <math>420</math>. Checking this gives
 +
<cmath>\sum_{k=1}^{28}\frac{n}{2a}\left(1-\sqrt{1-4a}\right)=\frac{1-\sqrt{1-4a}}{2a}\cdot 406=420</cmath>
 +
<cmath>\frac{1-\sqrt{1-4a}}{2a}=\frac{420}{406}=\frac{30}{29}</cmath>
 +
<cmath>29-29\sqrt{1-4a}=60a</cmath>
 +
<cmath>29\sqrt{1-4a}=29-60a</cmath>
 +
<cmath>29^2-4\cdot 29^2a=29^2+3600a^2-120\cdot 29a</cmath>
 +
<cmath>3600a^2=116a</cmath>
 +
<cmath>a=\frac{116}{3600}=\frac{29}{900} \implies \boxed{\textbf{(C) }929}</cmath>
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2020|ab=A|num-b=24|after=Last Problem}}
 
{{AMC12 box|year=2020|ab=A|num-b=24|after=Last Problem}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 18:13, 2 February 2020

Problem 25

The number $a=\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers, has the property that the sum of all real numbers $x$ satisfying \[\lfloor x \rfloor \cdot \{x\} = a \cdot x^2\] is $420$, where $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$ and $\{x\}=x- \lfloor x \rfloor$ denotes the fractional part of $x$. What is $p+q$?

$\textbf{(A) } 245 \qquad \textbf{(B) } 593 \qquad \textbf{(C) } 929 \qquad \textbf{(D) } 1331 \qquad \textbf{(E) } 1332$

Solution 1

Let $1<k<2$ be the unique solution in this range. Note that $ck$ is also a solution as long as $ck < c+1$, hence all our solutions are $k, 2k, ..., bk$ for some $b$. This sum $420$ must be between $\frac{b(b+1)}{2}$ and $\frac{(b+1)(b+2)}{2}$, which gives $b=28$ and $k=\frac{420}{406}=\frac{30}{29}$. Plugging this back in gives $a=\frac{29 \cdot 1}{30^2} = \frac{29}{900} \implies \boxed{\textbf{C}}$.

Solution 2

First note that $\lfloor x\rfloor \cdot \{x\}<0$ when $x<0$ while $ax^2\ge 0\forall x\in \mathbb{R}$. Thus we only need to look at positive solutions ($x=0$ doesn't affect the sum of the solutions). Next, we breakdown $\lfloor x\rfloor\cdot \{x\}$ down for each interval $[n,n+1)$, where $n$ is a positive integer. Assume $\lfloor x\rfloor=n$, then $\{x\}=x-n$. This means that when $x\in [n,n+1)$, $\lfloor x\rfloor \cdot \{x\}=n(x-n)=nx-n^2$. Setting this equal to $ax^2$ gives \[nx-n^2=ax^2\implies ax^2-nx+n^2=0 \implies x=\frac{n\pm \sqrt{n^2-4an^2}}{2a}\] We're looking at the solution with smaller $x$, which is $x=\frac{n-n\sqrt{1-4a}}{2a}=\frac{n}{2a}\left(1-\sqrt{1-4a}\right)$. Note that if $\lfloor x\rfloor=n$ is the greatest $n$ such that $\lfloor x\rfloor \cdot \{x\}=ax^2$ has a solution, the sum of all these solutions is slightly over $\sum_{k=1}^{n}k=\frac{n(n+1)}{2}$, which is $406$ when $n=28$, just under $420$. Checking this gives \[\sum_{k=1}^{28}\frac{n}{2a}\left(1-\sqrt{1-4a}\right)=\frac{1-\sqrt{1-4a}}{2a}\cdot 406=420\] \[\frac{1-\sqrt{1-4a}}{2a}=\frac{420}{406}=\frac{30}{29}\] \[29-29\sqrt{1-4a}=60a\] \[29\sqrt{1-4a}=29-60a\] \[29^2-4\cdot 29^2a=29^2+3600a^2-120\cdot 29a\] \[3600a^2=116a\] \[a=\frac{116}{3600}=\frac{29}{900} \implies \boxed{\textbf{(C) }929}\]

See Also

2020 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png