Difference between revisions of "2020 AMC 12A Problems/Problem 24"

(Problem 24)
 
(Problem 24)
Line 1: Line 1:
=Problem 24=
+
==Problem 24==
 
Suppose that <math>\triangle{ABC}</math> is an equilateral triangle of side length <math>s</math>, with the property that there is a unique point <math>P</math> inside the triangle such that <math>AP=1</math>, <math>BP=\sqrt{3}</math>, and <math>CP=2</math>. What is <math>s</math>?
 
Suppose that <math>\triangle{ABC}</math> is an equilateral triangle of side length <math>s</math>, with the property that there is a unique point <math>P</math> inside the triangle such that <math>AP=1</math>, <math>BP=\sqrt{3}</math>, and <math>CP=2</math>. What is <math>s</math>?
  
 
<math>\textbf{(A) } 1+\sqrt{2} \qquad \textbf{(B) } \sqrt{7} \qquad \textbf{(C) } \frac{8}{3} \qquad \textbf{(D) } \sqrt{5+\sqrt{5}} \qquad \textbf{(E) } 2\sqrt{2}</math>
 
<math>\textbf{(A) } 1+\sqrt{2} \qquad \textbf{(B) } \sqrt{7} \qquad \textbf{(C) } \frac{8}{3} \qquad \textbf{(D) } \sqrt{5+\sqrt{5}} \qquad \textbf{(E) } 2\sqrt{2}</math>
 +
 +
==Solution 1==

Revision as of 18:17, 1 February 2020

Problem 24

Suppose that $\triangle{ABC}$ is an equilateral triangle of side length $s$, with the property that there is a unique point $P$ inside the triangle such that $AP=1$, $BP=\sqrt{3}$, and $CP=2$. What is $s$?

$\textbf{(A) } 1+\sqrt{2} \qquad \textbf{(B) } \sqrt{7} \qquad \textbf{(C) } \frac{8}{3} \qquad \textbf{(D) } \sqrt{5+\sqrt{5}} \qquad \textbf{(E) } 2\sqrt{2}$

Solution 1