Difference between revisions of "2020 AMC 10A Problems/Problem 21"

(Solution)
m
Line 14: Line 14:
  
 
~seanyoon777
 
~seanyoon777
 +
 +
==Video Solution==
 +
https://youtu.be/Ozp3k2464u4
 +
 +
~IceMatrix
  
 
==See Also==
 
==See Also==

Revision as of 22:23, 31 January 2020

There exists a unique strictly increasing sequence of nonnegative integers $a_1 < a_2 < … < a_k$ such that\[\frac{2^{289}+1}{2^{17}+1} = 2^{a_1} + 2^{a_2} + … + 2^{a_k}.\]What is $k?$

$\textbf{(A) } 117 \qquad \textbf{(B) } 136 \qquad \textbf{(C) } 137 \qquad \textbf{(D) } 273 \qquad \textbf{(E) } 306$

Solution

First, substitute $2^{17}$ with $a$. Then, the given equation becomes $\frac{a^{17}+1}{a+1}=a^{16}-a^{15}+a^{14}...-a^1+a^0$. Now consider only $a^{16}-a^{15}$. This equals $a^{15}(a-1)=a^{15}*(2^{17}-1)$. Note that $2^{17}-1$ equals $2^{16}+2^{15}+...+1$, since the sum of a geometric sequence is $\frac{a^n-1}{a-1}$. Thus, we can see that $a^{16}-a^{15}$ forms the sum of 17 different powers of 2. Applying the same thing to each of $a^{14}-a^{13}$, $a^{12}-a^{11}$, ... , $a^{2}-a^{1}$, each of the pairs forms the sum of 17 different powers of 2. This gives us $17*8=136$. Finally, we must count the $a^0$ term. Our answer is $136+1=\boxed{\textbf{(C) } 137}$.

~seanyoon777

Video Solution

https://youtu.be/Ozp3k2464u4

~IceMatrix

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png