Difference between revisions of "2020 AMC 10A Problems/Problem 15"
(→Solution) |
(→Solution) |
||
Line 10: | Line 10: | ||
In order to produce a perfect square divisor, there must be an even exponent for each number in the prime factorization. Note that <math>7</math> and <math>11</math> can not be in the prime factorization of a perfect square because there is only one of each in <math>12!.</math> Thus, there are <math>6 \cdot 3 \cdot 2</math> perfect squares. (For <math>2</math>, you can have <math>0</math>, <math>2</math>, <math>4</math>, <math>6</math>, <math>8</math>, or <math>1</math>0 <math>2</math>s, etc.) | In order to produce a perfect square divisor, there must be an even exponent for each number in the prime factorization. Note that <math>7</math> and <math>11</math> can not be in the prime factorization of a perfect square because there is only one of each in <math>12!.</math> Thus, there are <math>6 \cdot 3 \cdot 2</math> perfect squares. (For <math>2</math>, you can have <math>0</math>, <math>2</math>, <math>4</math>, <math>6</math>, <math>8</math>, or <math>1</math>0 <math>2</math>s, etc.) | ||
The probability that the divisor chosen is a perfect square is <math>\frac{1}{22}</math>. <math>m + n = 1 + 22 = 23</math> <math>\implies \boxed{\textbf{(E) } 23 }</math> | The probability that the divisor chosen is a perfect square is <math>\frac{1}{22}</math>. <math>m + n = 1 + 22 = 23</math> <math>\implies \boxed{\textbf{(E) } 23 }</math> | ||
+ | ~mshell214 | ||
==See Also== | ==See Also== |
Revision as of 22:11, 31 January 2020
Problem
A positive integer divisor of is chosen at random. The probability that the divisor chosen is a perfect square can be expressed as , where and are relatively prime positive integers. What is ?
Solution
The prime factorization of is . This yields a total of divisors of In order to produce a perfect square divisor, there must be an even exponent for each number in the prime factorization. Note that and can not be in the prime factorization of a perfect square because there is only one of each in Thus, there are perfect squares. (For , you can have , , , , , or 0 s, etc.) The probability that the divisor chosen is a perfect square is . ~mshell214
See Also
2020 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.