Difference between revisions of "1966 AHSME Problems/Problem 36"
Shurong.ge (talk | contribs) (→Solution) |
Shurong.ge (talk | contribs) (→Solution 2) |
||
Line 4: | Line 4: | ||
<math>\text{(A) } 2^n \quad \text{(B) } 2^n+1 \quad \text{(C) } \frac{3^n-1}{2} \quad \text{(D) } \frac{3^n}{2} \quad \text{(E) } \frac{3^n+1}{2}</math> | <math>\text{(A) } 2^n \quad \text{(B) } 2^n+1 \quad \text{(C) } \frac{3^n-1}{2} \quad \text{(D) } \frac{3^n}{2} \quad \text{(E) } \frac{3^n+1}{2}</math> | ||
− | == Solution | + | == Solution 1 == |
Let <math>f(x)=(1+x+x^2)^n</math> then we have | Let <math>f(x)=(1+x+x^2)^n</math> then we have |
Revision as of 23:12, 7 January 2020
Problem
Let be an identity in . If we let , then equals:
Solution 1
Let then we have Adding yields Thus , or .
~ Nafer
See also
1966 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 35 |
Followed by Problem 37 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.