Difference between revisions of "2015 AMC 12B Problems/Problem 23"

Line 5: Line 5:
  
 
==Solution==
 
==Solution==
 +
 +
We need <cmath>abc = 2(ab+bc+ac) \quad \text{ or } \quad (a-2)bc = 2a(b+c).</cmath>
 +
Since <math>ab, ac \le bc</math>, we get <math>abc \le 6bc</math>. Thus <math>a\le 6</math>. From the second equation we see that <math>a > 2</math>. Thus <math>a\in \{3, 4, 5, 6\}</math>.
 +
 +
*If <math>a=3</math> we need <math>bc = 6(b+c) \Rightarrow (b-6)(c-6)=36</math>. We get '''five''' roots <math>\{(3, 7, 42), (3, 8, 24), (3,9,18), (3, 10, 15), (3,12,12)\}.</math>
 +
*If <math>a=4</math> we need <math>bc = 4(b+c) \Rightarrow (b-4)(c-4)=16</math>. We get '''three''' roots <math>\{(4,5,20), (4,6,12), (4,8,8)\}</math>.
 +
*If <math>a=5</math> we need <math>3bc = 10(b+c)</math>. Then <math>b\;|\; c</math>, say <math>c=bk</math>. Now we have <math>3bk=10(1+k)</math> and so <math>k\;|\; 10</math>. We get only '''one''' root (corresponding to <math>k=2</math>) <math>(5,5,10)</math>.
 +
*If <math>a=6</math> we need <math>4bc = 12(b+c)</math>. Then <math>(b-3)(c-3)=9</math>. We get ''' one''' root <math>(6,6,6)</math>.
 +
Thus, there are <math>5+3+1+1 = \boxed{\textbf{(B)}\; 10}</math> solutions.
 +
 +
==Solution 2==
 +
 
The surface area is <math>2(ab+bc+ca)</math>, and the volume is <math>abc</math>, so equating the two yields  
 
The surface area is <math>2(ab+bc+ca)</math>, and the volume is <math>abc</math>, so equating the two yields  
  
Line 30: Line 42:
 
Thus, there are <math>5+3+1+1 = \boxed{\textbf{(B)}\; 10}</math> solutions.
 
Thus, there are <math>5+3+1+1 = \boxed{\textbf{(B)}\; 10}</math> solutions.
  
==Solution 2==
+
==Solution 3==
  
 
Find that 2ab+2bc+2ac = abc
 
Find that 2ab+2bc+2ac = abc

Revision as of 17:14, 19 December 2019

Problem

A rectangular box measures $a \times b \times c$, where $a$, $b$, and $c$ are integers and $1\leq a \leq b \leq c$. The volume and the surface area of the box are numerically equal. How many ordered triples $(a,b,c)$ are possible?

$\textbf{(A)}\; 4 \qquad\textbf{(B)}\; 10 \qquad\textbf{(C)}\; 12 \qquad\textbf{(D)}\; 21 \qquad\textbf{(E)}\; 26$

Solution

We need \[abc = 2(ab+bc+ac) \quad \text{ or } \quad (a-2)bc = 2a(b+c).\] Since $ab, ac \le bc$, we get $abc \le 6bc$. Thus $a\le 6$. From the second equation we see that $a > 2$. Thus $a\in \{3, 4, 5, 6\}$.

  • If $a=3$ we need $bc = 6(b+c) \Rightarrow (b-6)(c-6)=36$. We get five roots $\{(3, 7, 42), (3, 8, 24), (3,9,18), (3, 10, 15), (3,12,12)\}.$
  • If $a=4$ we need $bc = 4(b+c) \Rightarrow (b-4)(c-4)=16$. We get three roots $\{(4,5,20), (4,6,12), (4,8,8)\}$.
  • If $a=5$ we need $3bc = 10(b+c)$. Then $b\;|\; c$, say $c=bk$. Now we have $3bk=10(1+k)$ and so $k\;|\; 10$. We get only one root (corresponding to $k=2$) $(5,5,10)$.
  • If $a=6$ we need $4bc = 12(b+c)$. Then $(b-3)(c-3)=9$. We get one root $(6,6,6)$.

Thus, there are $5+3+1+1 = \boxed{\textbf{(B)}\; 10}$ solutions.

Solution 2

The surface area is $2(ab+bc+ca)$, and the volume is $abc$, so equating the two yields

\[2(ab+bc+ca)=abc.\]

Divide both sides by $2abc$ to obtain \[\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}.\]

First consider the bound of the variable $a$. Since $\frac{1}{a}<\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2},$ we have $a>2$, or $a\geqslant3$.

Also note that $c \geq b \geq a > 0$, hence $\frac{1}{a} \geq \frac{1}{b}  \geq \frac{1}{c}$. Thus, $\frac{1}{2}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{3}{a}$, so $a \leq 6$.

So we have $a=3, 4, 5$ or $6$.

Before the casework, let's consider the possible range for $b$ if $\frac{1}{b}+\frac{1}{c}=k>0$. From $\frac{1}{b}<k$, we have $b>\frac{1}{k}$. From $\frac{2}{b} \geq \frac{1}{b}+\frac{1}{c}=k$, we have $b \leq \frac{2}{k}$. Thus $\frac{1}{k}<b \leq \frac{2}{k}$.

When $a=3$, we get $\frac{1}{b}+\frac{1}{c}=\frac{1}{6}$, so $b=7, 8, 9, 10, 11, 12$. We find the solutions $(a, b, c)=(3, 7, 42)$, $(3, 8, 24)$, $(3, 9, 18)$, $(3, 10, 15)$, $(3, 12, 12)$, for a total of $5$ solutions.

When $a=4$, we get $\frac{1}{b}+\frac{1}{c}=\frac{1}{4}$, so $b=5, 6, 7, 8$. We find the solutions $(a, b, c)=(4, 5, 20)$, $(4, 6, 12)$, $(4, 8, 8)$, for a total of $3$ solutions.

When $a=5$, we get $\frac{1}{b}+\frac{1}{c}=\frac{3}{10}$, so $b=5, 6$. The only solution in this case is $(a, b, c)=(5, 5, 10)$.

When $a=6$, $b$ is forced to be $6$, and thus $(a, b, c)=(6, 6, 6)$.

Thus, there are $5+3+1+1 = \boxed{\textbf{(B)}\; 10}$ solutions.

Solution 3

Find that 2ab+2bc+2ac = abc

I'm not going to go through the bashing process of this solution, I will just give the outline

Split it up into cases:

Case 1: a=b=c You should get a=6

Case 2: a=b You should get a^2(2-c)+4ac = 0. The easiest way to bash this is to set c equal to an integer, starting from 3 (so that a^2 is negative). You should get a=12, 8, 6, 5, but cut off 6 as we have already counted that in Case 1. Thus, three cases here. However, we can also do b=c and a=c on top of this - thus, we get 3*3 = 9 cases.

Case 3: Can we have a/b/c independent of each other? Simply put, no. It's just not possible for there to be no overlap. You can verify this by setting persay a equal to some integer, plugging it in to the equation, and then using SFFT, but you will be to no avail.

A practical approach here is to just look at the answer choices. If a/b/c were independent of each other, and a/b/c have nothing differentiating them, then for each independent ordered triple {a,b,c}, we should have 6 solutions. That would mean that the solution has to be 10+6n, where n is some integer. Obviously the only answer choice here that works is B, as the the other answer choices we cannot plug in an integral n to get them. Thus, either by POE or complicated induction, we find the answer to be 10.

iron

See Also

2015 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png