Difference between revisions of "1992 AIME Problems/Problem 4"

Line 12: Line 12:
  
 
== See also ==
 
== See also ==
 +
* [[1992 AIME Problems/Problem 3 | Previous Problem]]
 +
 +
* [[1992 AIME Problems/Problem 5 | Next Problem]]
 +
 
* [[1992 AIME Problems]]
 
* [[1992 AIME Problems]]

Revision as of 20:03, 6 November 2006

Problem

In Pascal's Triangle, each entry is the sum of the two entries above it. In which row of Pascal's Triangle do three consecutive entries occur that are in the ratio $3: 4: 5$?

Solution

In Pascal's Triangle, we know that the binomial coefficients of the nth row are $\displaystyle\binom{n}{0}$, $\displaystyle \binom{n}{1}$,...,$\displaystyle \binom{n}{n}$. Let our row be the nth row such that the three consecutive entries are $\displaystyle \binom{n}{r}$, $\displaystyle \binom{n}{r+1}$, and $\displaystyle \binom{n}{r+2}$.

After expanding and dividing one entry by another (to clean up the factorials), we see that $\displaystyle \frac 34=\frac{r+1}{n-r}$ and $\displaystyle \frac45=\frac{r+2}{n-r-1}$. Solving, $\displaystyle n = \boxed{062}$ SOMEONE PLEASE SAVE THE LATEX!

See also