Difference between revisions of "2016 AMC 10A Problems/Problem 19"
m (→Solution 2) |
m (→See Also:)) |
||
Line 43: | Line 43: | ||
Use your ruler (it is recommended that you bring a ruler and protractor to AMC10 tests) and accurately draw the diagram as one in solution 1, then measure the length of the segments, you should get a ratio of <math>r:s:t</math> being <math>\frac{5}{3}:1:\frac{12}{3}</math>, multiplying each side by <math>3</math> the result is <math>r+s+t = 5+3+12 = \boxed{\textbf{(E) }20}</math> | Use your ruler (it is recommended that you bring a ruler and protractor to AMC10 tests) and accurately draw the diagram as one in solution 1, then measure the length of the segments, you should get a ratio of <math>r:s:t</math> being <math>\frac{5}{3}:1:\frac{12}{3}</math>, multiplying each side by <math>3</math> the result is <math>r+s+t = 5+3+12 = \boxed{\textbf{(E) }20}</math> | ||
− | ==See Also== | + | ==See Also:)== |
{{AMC10 box|year=2016|ab=A|num-b=18|num-a=20}} | {{AMC10 box|year=2016|ab=A|num-b=18|num-a=20}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 11:12, 25 November 2019
Contents
Problem
In rectangle
and
. Point
between
and
, and point
between
and
are such that
. Segments
and
intersect
at
and
, respectively. The ratio
can be written as
where the greatest common factor of
and
is
What is
?
Solution 1
Use similar triangles. Our goal is to put the ratio in terms of . Since
Similarly,
. This means that
. As
and
are similar, we see that
. Thus
. Therefore,
so
Solution 2(Coordinate Bash)
We can set coordinates for the points. and
. The line
's equation is
, line
's equation is
, and line
's equation is
. Adding the equations of lines
and
, we find that the coordinates of
are
. Furthermore we find that the coordinates of
are
. Using the Pythagorean Theorem, we get that the length of
is
, and the length of
is
The length of
. Then
The ratio
Then
and
is
and
, respectively. The problem tells us to find
, so
An alternate solution is to perform the same operations, but only solve for the x-coordinates. By similar triangles, the ratios will be the same.
Solution 3
Extend to meet
at point
. Since
and
,
by similar triangles
and
. It follows that
. Now, using similar triangles
and
,
. WLOG let
. Solving for
gives
and
. So our desired ratio is
and
.
Solution 4 (Mass Points)
Draw line segment , and call the intersection between
and
point
. In
, observe that
and
. Using mass points, find that
. Again utilizing
, observe that
and
. Use mass points to find that
. Now, draw a line segment with points
,
,
, and
ordered from left to right. Set the values
,
,
and
. Setting both sides segment
equal, we get
. Plugging in and solving gives
,
,
. The question asks for
, so we add
to
and multiply the ratio by
to create integers. This creates
. This sums up to
Solution 5 (Cheap Solution)
Use your ruler (it is recommended that you bring a ruler and protractor to AMC10 tests) and accurately draw the diagram as one in solution 1, then measure the length of the segments, you should get a ratio of being
, multiplying each side by
the result is
See Also:)
2016 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.