Difference between revisions of "2019 AMC 8 Problems/Problem 24"
(Added diagram) |
(Added full problem) |
||
Line 1: | Line 1: | ||
− | ==Problem== | + | |
+ | |||
+ | |||
+ | ==Problem 24== | ||
+ | In triangle <math>ABC</math>, point <math>D</math> divides side <math>\overline{AC}</math> s that <math>AD</math>:<math>DC=1</math>:<math>2</math>. Let <math>E</math> be the midpoint of <math>\overline{BD}</math> and left <math>F</math> be the point of intersection of line <math>BC</math> and line <math>AE</math>. Given that the area of <math>\triangle ABC</math> is <math>360</math>, what is the area of <math>\triangle EBF</math>? | ||
+ | |||
<asy> | <asy> | ||
unitsize(2cm); | unitsize(2cm); | ||
Line 23: | Line 28: | ||
label("$F$",FF,S); | label("$F$",FF,S); | ||
</asy> | </asy> | ||
+ | |||
+ | |||
+ | <math>\textbf{(A) }24\qquad\textbf{(B) }30\qquad\textbf{(C) }32\qquad\textbf{(D) }36\qquad\textbf{(E) }40</math> | ||
==Solution 1== | ==Solution 1== | ||
− | == | + | |
− | {{AMC8 box|year=2019|num-b= | + | |
+ | ==See Also== | ||
+ | {{AMC8 box|year=2019|num-b=19|num-a=21}} | ||
+ | |||
+ | {{MAA Notice}} |
Revision as of 16:37, 20 November 2019
Problem 24
In triangle , point divides side s that ::. Let be the midpoint of and left be the point of intersection of line and line . Given that the area of is , what is the area of ?
Solution 1
See Also
2019 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.