Difference between revisions of "Mock AMC 10B Problems"

(added my own Mock AMC 10B)
 
(edited asy)
Line 21: Line 21:
  
 
In the diagram below, <math>ABC</math> is an isosceles right triangle with a right angle at <math>B</math> and with a hypotenuse of <math>40\sqrt{2}</math> units. Find the greatest integer less than or equal to the value of the radius of the quarter circle inscribed inside <math>ABC</math>.
 
In the diagram below, <math>ABC</math> is an isosceles right triangle with a right angle at <math>B</math> and with a hypotenuse of <math>40\sqrt{2}</math> units. Find the greatest integer less than or equal to the value of the radius of the quarter circle inscribed inside <math>ABC</math>.
[asy] label("<math>B</math>", (8.5, -0.5), S); label("<math>A</math>", (8.5, (9sqrt(2)+0.5)), S); label("<math>C</math>", ((9.5+9sqrt(2)), -0.5), S); draw((9,0)--((9+9sqrt(2)),0)); draw((9,0)--(9,9sqrt(2))); draw(((9+9sqrt(2)),0)--(9,9sqrt(2))); draw(arc((9,0),9,0,90));  [/asy]
+
<center><asy> label("$B$", (8.5, -0.5), S); label("$A$", (8.5, (9sqrt(2)+0.5)), S); label("$C$", ((9.5+9sqrt(2)), -0.5), S); draw((9,0)--((9+9sqrt(2)),0)); draw((9,0)--(9,9sqrt(2))); draw(((9+9sqrt(2)),0)--(9,9sqrt(2))); draw(arc((9,0),9,0,90));  </asy></center>
  
 
<math>\textbf{(A) }26 \qquad \textbf{(B) }27 \qquad \textbf{(C) }28 \qquad \textbf{(D) }29 \qquad \textbf{(E) }30 \qquad</math>
 
<math>\textbf{(A) }26 \qquad \textbf{(B) }27 \qquad \textbf{(C) }28 \qquad \textbf{(D) }29 \qquad \textbf{(E) }30 \qquad</math>
Line 66: Line 66:
 
Consider Square <math>ABCD</math>, a square with side length <math>10</math>. Let Points <math>E</math>, <math>F</math>, <math>G</math>, <math>H</math> be the midpoints of sides <math>AB</math>, <math>BC</math>, <math>CD</math>, and <math>DA</math>, respectively. Find the area of the square formed by the four line segments <math>AG</math>, <math>BH</math>, <math>CE</math>, and <math>DF</math>.
 
Consider Square <math>ABCD</math>, a square with side length <math>10</math>. Let Points <math>E</math>, <math>F</math>, <math>G</math>, <math>H</math> be the midpoints of sides <math>AB</math>, <math>BC</math>, <math>CD</math>, and <math>DA</math>, respectively. Find the area of the square formed by the four line segments <math>AG</math>, <math>BH</math>, <math>CE</math>, and <math>DF</math>.
  
[asy] draw((0,0)--(10,0)); draw((0,0)--(0, 10)); draw((10,0)--(10, 10)); draw((10,10)--(0, 10)); draw((0,10)--(5, 0)); draw((0,0)--(10, 5)); draw((10,0)--(5, 10)); draw((10,10)--(0, 5)); [/asy]
+
<center><asy> draw((0,0)--(10,0)); draw((0,0)--(0, 10)); draw((10,0)--(10, 10)); draw((10,10)--(0, 10)); draw((0,10)--(5, 0)); draw((0,0)--(10, 5)); draw((10,0)--(5, 10)); draw((10,10)--(0, 5)); </asy></center>
  
 
<math>\textbf{(A)}\ 18\qquad\textbf{(B)}\ 20\qquad\textbf{(C)}\ 25\qquad\textbf{(D)}\ 40\qquad\textbf{(E)}\ 50</math>
 
<math>\textbf{(A)}\ 18\qquad\textbf{(B)}\ 20\qquad\textbf{(C)}\ 25\qquad\textbf{(D)}\ 40\qquad\textbf{(E)}\ 50</math>
Line 72: Line 72:
 
===Problem 12===
 
===Problem 12===
  
[asy] draw((0,0)--(10*sqrt(3),0)); draw((0,0)--(0, 10)); draw((10*sqrt(3),0)--(0, 10)); draw(arc((5*sqrt(3),0),5*sqrt(3),0,180)); label("<math>A</math>",(3,4)); [/asy]
+
<center><asy> draw((0,0)--(10*sqrt(3),0)); draw((0,0)--(0, 10)); draw((10*sqrt(3),0)--(0, 10)); draw(arc((5*sqrt(3),0),5*sqrt(3),0,180)); label("$A$",(3,4)); </asy></center>
  
 
In the figure shown here, the triangle has two legs of length <math>10</math> and <math>10\sqrt{3}</math>, and the semicircle has diameter <math>10\sqrt{3}</math>. The area of Region <math>A</math> can be expressed as <math>\frac{a\pi+b\sqrt{c}}{d}</math>, where <math>a, b, c, d</math> are positive integers, <math>c</math> is square-free, <math>\text{ gcd }(a, d) = 1</math>, and <math>\text{ gcd }(b, d) = 1</math>. Find <math>a+b+c+d</math>.
 
In the figure shown here, the triangle has two legs of length <math>10</math> and <math>10\sqrt{3}</math>, and the semicircle has diameter <math>10\sqrt{3}</math>. The area of Region <math>A</math> can be expressed as <math>\frac{a\pi+b\sqrt{c}}{d}</math>, where <math>a, b, c, d</math> are positive integers, <math>c</math> is square-free, <math>\text{ gcd }(a, d) = 1</math>, and <math>\text{ gcd }(b, d) = 1</math>. Find <math>a+b+c+d</math>.
Line 93: Line 93:
  
 
In the figure below, a square of area <math>108</math> is inscribed inside a square of area <math>144</math>. There are two segments, labeled <math>m</math> and <math>n</math>. The value of <math>m</math> can be expressed as <math>a + b \sqrt{c}</math>, where <math>a, b, c</math> are positive integers and <math>c</math> is square-free. Find <math>a+b+c</math>.
 
In the figure below, a square of area <math>108</math> is inscribed inside a square of area <math>144</math>. There are two segments, labeled <math>m</math> and <math>n</math>. The value of <math>m</math> can be expressed as <math>a + b \sqrt{c}</math>, where <math>a, b, c</math> are positive integers and <math>c</math> is square-free. Find <math>a+b+c</math>.
[asy] draw((0,2)--(2,2)--(2,0)--(0,0)--cycle); draw((0,0.3)--(0.3,2)--(2,1.7)--(1.7,0)--cycle); label("<math>n</math>",(-0.1,0.15)); label("<math>m</math>",(-0.1,1.15));[/asy]
+
<center><asy> draw((0,2)--(2,2)--(2,0)--(0,0)--cycle); draw((0,0.3)--(0.3,2)--(2,1.7)--(1.7,0)--cycle); label("$n$",(-0.1,0.15)); label("$m$",(-0.1,1.15));</asy></center>
  
 
<math>\textbf{(A)}\ 11\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 13\qquad\textbf{(D)}\ 14\qquad\textbf{(E)}\ 15</math>
 
<math>\textbf{(A)}\ 11\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 13\qquad\textbf{(D)}\ 14\qquad\textbf{(E)}\ 15</math>
Line 107: Line 107:
 
Let <math>S</math> be a regular octagon. How many distinct quadrilaterals can be formed from the vertices of <math>S</math> given that two quadrilaterals are not distinct if the latter can be obtained by a rotation of the former?
 
Let <math>S</math> be a regular octagon. How many distinct quadrilaterals can be formed from the vertices of <math>S</math> given that two quadrilaterals are not distinct if the latter can be obtained by a rotation of the former?
  
[asy] size(3cm); pair A[]; for (int i=0; i<9; ++i) { A[i] = rotate(22.5+45*i)*(1,0); } filldraw(A[0]--A[1]--A[2]--A[3]--A[4]--A[5]--A[6]--A[7]--cycle,gray,black); for (int i=0; i<8; ++i) { dot(A[i]); } [/asy]
+
<center><asy> size(3cm); pair A[]; for (int i=0; i<9; ++i) { A[i] = rotate(22.5+45*i)*(1,0); } filldraw(A[0]--A[1]--A[2]--A[3]--A[4]--A[5]--A[6]--A[7]--cycle,gray,black); for (int i=0; i<8; ++i) { dot(A[i]); } </asy></center>
  
 
<math>\textbf{(A)}\ 9 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 16 \qquad\textbf{(D)}\ 35 \qquad\textbf{(E)}\ 70</math>
 
<math>\textbf{(A)}\ 9 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 16 \qquad\textbf{(D)}\ 35 \qquad\textbf{(E)}\ 70</math>
Line 115: Line 115:
 
Two logs of length 10 are laying on the ground touching each other. Their radii are 3 and 1, and the smaller log is fastened to the ground. The bigger log rolls over the smaller log without slipping, and stops as soon as it touches the ground again. What is the volume of the set of points swept out by the larger log as it rolls over the smaller one?
 
Two logs of length 10 are laying on the ground touching each other. Their radii are 3 and 1, and the smaller log is fastened to the ground. The bigger log rolls over the smaller log without slipping, and stops as soon as it touches the ground again. What is the volume of the set of points swept out by the larger log as it rolls over the smaller one?
  
[asy]   draw(Circle((0,0),1)); draw(Circle((-2*sqrt(3),2),3)); [/asy]
+
<center><asy>   draw(Circle((0,0),1)); draw(Circle((-2*sqrt(3),2),3)); </asy></center>
  
 
<math>\textbf{(A) } 250\pi \qquad \textbf{(B) } 260\pi \qquad \textbf{(C) } 270\pi \qquad \textbf{(D) } 280\pi \qquad \textbf{(E) } 290\pi</math>
 
<math>\textbf{(A) } 250\pi \qquad \textbf{(B) } 260\pi \qquad \textbf{(C) } 270\pi \qquad \textbf{(D) } 280\pi \qquad \textbf{(E) } 290\pi</math>

Revision as of 21:44, 21 September 2019

Problem 1

What is the difference between $6+7+8+9+10$ and $1+2+3+4+5$? $\textbf{(A)}\ 10\qquad\textbf{(B)}\ 15\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 25\qquad\textbf{(E)}\ 30$

Problem 2

Al, Bob, Clayton, Derek, Ethan, and Frank are six Boy Scouts that will be split up into two groups of three Boy Scouts for a boating trip. How many ways are there to split up the six boys if the two groups are indistinguishable?


$\textbf{(A)}\ 5 \qquad\textbf{(B)}\ 10  \qquad\textbf{(C)}\ 15 \qquad\textbf{(D)}\ 20 \qquad\textbf{(E)}\ 35$

Problem 3

Which of these numbers is a rational number?


$\textbf{(A) }(\sqrt[3]{3})^{2018} \qquad \textbf{(B) }(\sqrt{3})^{2019} \qquad \textbf{(C) }(3+\sqrt{2})^2 \qquad \textbf{(D) }(2\pi)^2 \qquad \textbf{(E) }(3+\sqrt{2})(3-\sqrt{2}) \qquad$

Problem 4

In the diagram below, $ABC$ is an isosceles right triangle with a right angle at $B$ and with a hypotenuse of $40\sqrt{2}$ units. Find the greatest integer less than or equal to the value of the radius of the quarter circle inscribed inside $ABC$.

[asy] label("$B$", (8.5, -0.5), S); label("$A$", (8.5, (9sqrt(2)+0.5)), S); label("$C$", ((9.5+9sqrt(2)), -0.5), S); draw((9,0)--((9+9sqrt(2)),0)); draw((9,0)--(9,9sqrt(2))); draw(((9+9sqrt(2)),0)--(9,9sqrt(2))); draw(arc((9,0),9,0,90));  [/asy]

$\textbf{(A) }26 \qquad \textbf{(B) }27 \qquad \textbf{(C) }28 \qquad \textbf{(D) }29 \qquad \textbf{(E) }30 \qquad$

Problem 5

The three medians of the unit equilateral triangle $ABC$ intersect at point $P$. Find $PA + PB + PC$.

$\textbf{(A)}\ \frac{\sqrt{3}}{2} \qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ \frac{3\sqrt{3}}{4}\qquad\textbf{(D)}\ \sqrt{3}\qquad\textbf{(E)}\ 2$

Problem 6

Mark rolled two standard dice. Given that he rolled two distinct values, find the probability that he rolled two primes.

$\textbf{(A)}\ \frac{1}{12}\qquad\textbf{(B)}\ \frac{1}{7}\qquad\textbf{(C)}\ \frac{1}{5}\qquad\textbf{(D)}\ \frac{2}{4}\qquad\textbf{(E)}\ \frac{2}{5}$

Problem 7

What is the sum of the solutions to $n^2=x^2-8x+96$?, where $n$ is a positive integer?

$\textbf{(A) }8 \qquad\textbf{(B) }9 \qquad\textbf{(C) }10 \qquad\textbf{(D) }11 \qquad\textbf{(E) }12$

Problem 8

In the following diagram, Bob starts at the origin and makes a certain number of moves. A move is defined as him starting at $(x,y)$ and moves to $(x,y+1)$, $(x+1,y)$, $(x,y-1)$, and $(x-1,y)$ with equal probability. The probability that Bob will eventually reach the point $(4,3)$ is $N$. Find the number of distinct points, including $(4, 3)$, that satisfy that the probability that he will eventually reach that point is $N$.

$\mathrm{(A) \ } 1 \qquad \mathrm{(B) \ } 2 \qquad \mathrm{(C) \ } 4 \qquad \mathrm{(D) \ } 8\qquad \mathrm{(E) \ } 12$

Problem 9

Consider the line segment $OA_0$, which has two endpoints $O = (0, 0)$ and $A = (5, 0)$. $OA_n$ is constructed by rotating $OA_0$ about the point $O$ clockwise $\frac{360n}{\mu}$ degrees, where $\mu$ is a positive integer greater than 2 and $n < \mu$. After this operation, the line segments $A_0A_1$, $A_1A_2$, $A_2A_3$, $...$, $A_{n-2}A_{n-1}$, $A_{n-1}A_0$ are drawn. Let $S$ be the sum of the areas of the Triangles $OA_0A_1, OA_1A_2, OA_2A_3, ..., OA_{n-2}A_{n-1}, OA_{n-1}A_0$. As $n$ approaches infinity, $S$ approaches a constant $p$. Find $\lfloor p \rfloor$.


$\textbf{(A)}\ 77\qquad\textbf{(B)}\ 78\qquad\textbf{(C)}\ 79\qquad\textbf{(D)}\ 80\qquad\textbf{(E)}\ 81$

Problem 10

A certain period of time $P$ starts at exactly 6:09PM on a Tuesday and ends at exactly 6:09AM on a Thursday. Which of these numbers listed in the choices here is a possible length in days for $P$?

$\mathrm{(A) \ } 100.5\qquad \mathrm{(B) \ } 1000.5\qquad \mathrm{(C) \ } 10,000.5\qquad \mathrm{(D) \ } 100,000.5\qquad \mathrm{(E) \ } 1,000,000.5$

Problem 11

Consider Square $ABCD$, a square with side length $10$. Let Points $E$, $F$, $G$, $H$ be the midpoints of sides $AB$, $BC$, $CD$, and $DA$, respectively. Find the area of the square formed by the four line segments $AG$, $BH$, $CE$, and $DF$.

[asy] draw((0,0)--(10,0)); draw((0,0)--(0, 10)); draw((10,0)--(10, 10)); draw((10,10)--(0, 10)); draw((0,10)--(5, 0)); draw((0,0)--(10, 5)); draw((10,0)--(5, 10)); draw((10,10)--(0, 5)); [/asy]

$\textbf{(A)}\ 18\qquad\textbf{(B)}\ 20\qquad\textbf{(C)}\ 25\qquad\textbf{(D)}\ 40\qquad\textbf{(E)}\ 50$

Problem 12

[asy] draw((0,0)--(10*sqrt(3),0)); draw((0,0)--(0, 10)); draw((10*sqrt(3),0)--(0, 10)); draw(arc((5*sqrt(3),0),5*sqrt(3),0,180)); label("$A$",(3,4)); [/asy]

In the figure shown here, the triangle has two legs of length $10$ and $10\sqrt{3}$, and the semicircle has diameter $10\sqrt{3}$. The area of Region $A$ can be expressed as $\frac{a\pi+b\sqrt{c}}{d}$, where $a, b, c, d$ are positive integers, $c$ is square-free, $\text{ gcd }(a, d) = 1$, and $\text{ gcd }(b, d) = 1$. Find $a+b+c+d$.

$\textbf{(A)}\ 130 \qquad\textbf{(B)}\ 131 \qquad\textbf{(C)}\ 132 \qquad\textbf{(D)}\ 133 \qquad\textbf{(E)}\ 134$

Problem 13

Kevin has a girlfriend named Anna. The two of them are both in the same class, BC Calculus, which is a class that has $32$ students. To split the class up into partners that work on a group project involving integrals, the teacher, Mrs. Jannesen, randomly partitions the class into groups of two. If is assigned to be partners with his girlfriend, he will be happy. What is the probability that Kevin is happy?

$\mathrm{(A) \ } \frac{1}{30}\qquad \mathrm{(B) \ } \frac{1}{31}\qquad \mathrm{(C) \ } \frac{1}{32}\qquad \mathrm{(D) \ } \frac{1}{33}\qquad \mathrm{(E) \ } \frac{1}{34}$

Problem 14

Let $S$ be the number of distinct triangles that can be formed from $5$ coplanar points. Find the sum of all possible values of $S$.

$\textbf{(A)}\ 10\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 19\qquad\textbf{(D)}\ 25\qquad\textbf{(E)}\ 33$

Problem 15

In the figure below, a square of area $108$ is inscribed inside a square of area $144$. There are two segments, labeled $m$ and $n$. The value of $m$ can be expressed as $a + b \sqrt{c}$, where $a, b, c$ are positive integers and $c$ is square-free. Find $a+b+c$.

[asy] draw((0,2)--(2,2)--(2,0)--(0,0)--cycle); draw((0,0.3)--(0.3,2)--(2,1.7)--(1.7,0)--cycle); label("$n$",(-0.1,0.15)); label("$m$",(-0.1,1.15));[/asy]

$\textbf{(A)}\ 11\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 13\qquad\textbf{(D)}\ 14\qquad\textbf{(E)}\ 15$

Problem 16

For a particular positive integer $n$, the number of ordered sextuples of positive integers $(a, b, c, d, e, f)$ that satisfy $a+b+c+d+e+f \leq n$ is exactly $3003$. Find $n$.

$\textbf{(A)}\ 11 \qquad\textbf{(B)}\ 12 \qquad\textbf{(C)}\ 13 \qquad\textbf{(D)}\ 14 \qquad\textbf{(E)}\ 15$

Problem 17

Let $S$ be a regular octagon. How many distinct quadrilaterals can be formed from the vertices of $S$ given that two quadrilaterals are not distinct if the latter can be obtained by a rotation of the former?

[asy] size(3cm); pair A[]; for (int i=0; i<9; ++i) { A[i] = rotate(22.5+45*i)*(1,0); } filldraw(A[0]--A[1]--A[2]--A[3]--A[4]--A[5]--A[6]--A[7]--cycle,gray,black); for (int i=0; i<8; ++i) { dot(A[i]); } [/asy]

$\textbf{(A)}\ 9 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 16 \qquad\textbf{(D)}\ 35 \qquad\textbf{(E)}\ 70$

Problem 18

Two logs of length 10 are laying on the ground touching each other. Their radii are 3 and 1, and the smaller log is fastened to the ground. The bigger log rolls over the smaller log without slipping, and stops as soon as it touches the ground again. What is the volume of the set of points swept out by the larger log as it rolls over the smaller one?

[asy]   draw(Circle((0,0),1)); draw(Circle((-2*sqrt(3),2),3)); [/asy]

$\textbf{(A) } 250\pi \qquad \textbf{(B) } 260\pi \qquad \textbf{(C) } 270\pi \qquad \textbf{(D) } 280\pi \qquad \textbf{(E) } 290\pi$

Problem 19

What is the largest power of $2$ that divides $3^{2016}-1$?

$\textbf{(A)}\ 16 \qquad\textbf{(B)}\ 32 \qquad\textbf{(C)}\ 64 \qquad\textbf{(D)}\ 128 \qquad\textbf{(E)}\ 256$

Problem 20

Define a permutation $a_1a_2a_3a_4a_5a_6$ of the set $1, 2, 3, 4, 5, 6$ to be $\text{ factor-hating }$ if $\text{ gcd }(a_k, a_{k+1}) = 1$ for all $1 \leq k \leq 5$. Find the number of $\text{ factor-hating }$ permutations.

$\textbf{(A) }36 \qquad \textbf{(B) }48 \qquad \textbf{(C) }56 \qquad \textbf{(D) }64 \qquad \textbf{(E) }72 \qquad$

Problem 21

There are $N$ distinct $4\times4$ arrays of integers that satisfy: 1. Each integer in the array is a $1, 2, 3$ or $4$. 2. Every row and column contains all the integers $1, 2, 3$ and $4$. 3. No row or column contains two of the same number. Find $N$.

$\textbf{(A)}\ 432 \qquad\textbf{(B)}\ 576 \qquad\textbf{(C)}\ 864 \qquad\textbf{(D)}\ 1,152 \qquad\textbf{(E)}\ 1,296$

Problem 22

Let $S = \{r_1, r_2, r_3, ..., r_{\mu}\}$ be the set of all possible remainders when $15^{n} - 7^{n}$ is divided by $256$, where $n$ is a positive integer and $\mu$ is the number of elements in $S$. The sum $r_1 + r_2 + r_3 + ... + r_{\mu}$ can be expressed as \[p^qr,\]where $p, q, r$ are positive integers and $p$ and $r$ are as small as possible. Find $p+q+r$.

$\textbf{(A)}\ 40\qquad\textbf{(B)}\ 41\qquad\textbf{(C)}\ 42\qquad\textbf{(D)}\ 43\qquad\textbf{(E)}\ 44$

Problem 23

Four real numbers $x_1, x_2, x_3, x_4$ are randomly and independently selected from the range $[0, 9]$. Let the Sets $S_1$, $S_2$, $S_3$, $S_4$ contain all of the real numbers in the range $[x_1, x_1+1], [x_2, x_2+1], [x_3, x_3+1],$ and $[x_4, x_4+1]$, respectively. The probability that the four aforementioned sets are disjoint can be expressed as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

$\textbf{(A)}\ 95\qquad\textbf{(B)}\ 96\qquad\textbf{(C)}\ 97\qquad\textbf{(D)}\ 98\qquad\textbf{(E)}\ 99$

Problem 24

At a political discussion meeting held by Stalin, FDR, and Hitler, four communists (Stalin's team), four capitalists (FDR's team), and four fascists (Hitler's team) sit around a round table with $12$ seats. To encourage political debate, there is a rule that no two people of the same political stance may sit adjacent to each other. Let $N$ be the number of distinct seating arrangements following the rule. Find $\frac{N}{(4!)^3}$.

$\textbf{(A)}\ 804\qquad\textbf{(B)}\ 876\qquad\textbf{(C)}\ 948\qquad\textbf{(D)}\ 984 \qquad\textbf{(E)}\ 1,020$

Problem 25

Let $S_{n, k} = \sum_{a=0}^{n} \dbinom{a}{k}\dbinom{n-a}{k}$. Find the remainder when $\sum_{n=0}^{200} \sum_{k=0}^{200} S_{n, k}$ is divided by $1000$.


$\textbf{(A)}\ 374 \qquad\textbf{(B)}\ 375 \qquad\textbf{(C)}\ 503 \qquad\textbf{(D)}\ 750 \qquad\textbf{(E)}\ 751$