Difference between revisions of "1983 AIME Problems/Problem 8"

(Solution 2: Clarification of Solution 1)
(Solution 2: Clarification of Solution 1)
Line 15: Line 15:
 
So basically, <math>p</math> is the largest prime number such that
 
So basically, <math>p</math> is the largest prime number such that
 
<cmath>\lfloor\frac{200}{3}\rfloor>3</cmath>
 
<cmath>\lfloor\frac{200}{3}\rfloor>3</cmath>
Since <math>p<\frac{200}{3}\approx66.66...</math>, the largest prime value for <math>p</math> is <math>p=61</math>
+
Since <math>p<\frac{200}{3}=66.66...</math>, the largest prime value for <math>p</math> is <math>p=\boxed{61}</math>
  
 
~ Nafer
 
~ Nafer

Revision as of 11:26, 14 August 2019

Problem

What is the largest $2$-digit prime factor of the integer $n = {200\choose 100}$?

Solution

Expanding the binomial coefficient, we get ${200 \choose 100}=\frac{200!}{100!100!}$. Let the required prime be $p$; then $10 \le p < 100$. If $p > 50$, then the factor of $p$ appears twice in the denominator. Thus, we need $p$ to appear as a factor at least three times in the numerator, so $3p<200$. The largest such prime is $\boxed{061}$, which is our answer.


Solution 2: Clarification of Solution 1

We know that \[{200\choose100}=\frac{200!}{100!100!}\] Since $p<100$, there is at least $1$ factor of $p$ in each of the $100!$ in the denominator. Thus there must be at least $3$ factors of $p$ in the numerator $200!$ for $p$ to be a factor of $n=\frac{200!}{100!100!}$. (Note that here we assume the minimum because as $p$ goes larger in value, the number of factors of $p$ in a number decreases,)

So basically, $p$ is the largest prime number such that \[\lfloor\frac{200}{3}\rfloor>3\] Since $p<\frac{200}{3}=66.66...$, the largest prime value for $p$ is $p=\boxed{61}$

~ Nafer

See Also

1983 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions