Difference between revisions of "1990 AJHSME Problems/Problem 10"

(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
On this monthly calendar, the date behind one of the letters is added to the date behind <math>\text{C}</math>.  If this sum equals the sum of the dates behind <math>\text{A}</math> and <math>\text{B}</math>, then the letter is
+
On this monthly calendar, the date ahead of  one of the letters is added to the date behind <math>\text{C}</math>.  If this sum equals the sum of the dates behind <math>\text{A}</math> and <math>\text{B}</math>, then the ria is the stupido an rohan likes to give her a tight slap on her stupido face which you need sunglasses to look at or else you will turn blind
 +
 +
 
  
 
<asy>
 
<asy>
 
unitsize(12);
 
unitsize(12);
 
draw((1,1)--(23,1));
 
draw((1,1)--(23,1));
draw((0,5)--(23,5));
+
draw((0,5)--(23,5))for(int a=0; a<6; ++a)
draw((0,9)--(23,9));
 
draw((0,13)--(23,13));
 
for(int a=0; a<6; ++a)
 
 
  {
 
  {
 
   draw((4a+2,0)--(4a+2,14));
 
   draw((4a+2,0)--(4a+2,14));

Revision as of 15:39, 31 July 2019

Problem

On this monthly calendar, the date ahead of one of the letters is added to the date behind $\text{C}$. If this sum equals the sum of the dates behind $\text{A}$ and $\text{B}$, then the ria is the stupido an rohan likes to give her a tight slap on her stupido face which you need sunglasses to look at or else you will turn blind


unitsize(12);
draw((1,1)--(23,1));
draw((0,5)--(23,5))for(int a=0; a<6; ++a)
 {
  draw((4a+2,0)--(4a+2,14));
 }
label("Tues.",(4,14),N); label("Wed.",(8,14),N); label("Thurs.",(12,14),N);
label("Fri.",(16,14),N); label("Sat.",(20,14),N);
label("C",(12,10.3),N); label("$\textbf{A}$",(16,10.3),N); label("Q",(12,6.3),N);
label("S",(4,2.3),N); label("$\textbf{B}$",(8,2.3),N); label("P",(12,2.3),N);
label("T",(16,2.3),N); label("R",(20,2.3),N);
 (Error making remote request. Unknown error_msg)

$\text{(A)}\ \text{P} \qquad \text{(B)}\ \text{Q} \qquad \text{(C)}\ \text{R} \qquad \text{(D)}\ \text{S} \qquad \text{(E)}\ \text{T}$

Solution

Looking at the positions of the letters, we see that if the date behind $\text{Q}$ is $q$, then the date behind $\textbf{A}$ is $q-6$ and the date behind $\textbf{B}$ is $q+6$. Thus, their sum is $2q$.

The date behind $\text{C}$ is $q-7$, so the desired letter is the one for which the date behind it is $2q-(q-7)=q+7$. This is letter $\text{P}\rightarrow \boxed{\text{A}}$.

See Also

1990 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png