Difference between revisions of "2006 IMO Problems/Problem 1"

m (Solution)
(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
Let <math>ABC</math> be triangle with incenter <math>I</math>. A point <math>P</math> in the interior of the triangle satisfies <math>\angle PBA+\angle PCA = \angle PBC+\angle PCB</math>. Show that <math>AP \geq AI</math>, and that equality holds if and only if <math>P=I</math>
+
Let <math>ABC</math> be triangle with incenter <math>I</math>. A point <math>P</math> in the interior of the triangle satisfies <math>\angle PBA+\angle PCA = \angle PBC+\angle PCB</math>. Show that <math>AP \geq AI</math>, and that equality holds if and only if <math>P=I.</math>
  
 
==Solution==
 
==Solution==

Revision as of 20:42, 23 July 2019

Problem

Let $ABC$ be triangle with incenter $I$. A point $P$ in the interior of the triangle satisfies $\angle PBA+\angle PCA = \angle PBC+\angle PCB$. Show that $AP \geq AI$, and that equality holds if and only if $P=I.$

Solution

We have \[\angle IBP = \angle IBC - \angle PBC = \frac{1}{2} \angle ABC - \angle PBC = \frac{1}{2}(\angle PCB - \angle PCA)\] (1) and similarly \[\angle ICP = \angle PCB - \angle ICB = \angle PCB - \frac{1}{2} \angle ACB = \frac{1}{2}(\angle PBA - \angle PBC)\] (2). Since $\angle PBA + \angle PCA = \angle PBC + \angle PCB$, we have $\angle PBA -  \angle PBC = \angle PCB - \angle PCA$ (3).

By (1), (2), and (3), we get $\angle IBP = \angle ICP$; hence $B,I,P,C$ are concyclic.

Let ray $AI$ meet the circumcircle of $\Delta ABC$ at point $J$. Then, by the Incenter-Excenter Lemma, $JB=JC=JI=JP$.

Finally, $AP+JP \geq AJ = AI+IJ$ (since triangle APJ can be degenerate, which happens only when $P=I$), but $JI=JP$; hence $AP \geq AI$ and we are done.

By Mengsay LOEM , Cambodia IMO Team 2015

latexed by tluo5458 :)