Difference between revisions of "Mock Geometry AIME 2011 Problems/Problem 6"

(Solution)
m (Solution)
Line 6: Line 6:
 
<asy>
 
<asy>
 
unitsize(0.75cm);
 
unitsize(0.75cm);
draw((0,4*sqrt(3))--(8,4*sqrt(3)));
+
draw((0,1+4*sqrt(3))--(8,1+4*sqrt(3)));
draw((0,4*sqrt(3))--(4,0));
+
draw((0,1+4*sqrt(3))--(4,1));
draw((8,4*sqrt(3))--(4,0));
+
draw((0,1+4*sqrt(3))--(4,1));
draw((6,4*sqrt(3))--(4,0));
+
draw((6,1+4*sqrt(3))--(4,1));
label("$x$",(5,2sqrt(3)),NNW);
+
label("$x$",(5,1+2*sqrt(3)),NNW);
label("$y$", (3,0),N);
+
label("$y$", (4,1+4*sqrt(3)),NW);
label("$z$", (7,0),N);
+
label("$z$", (8,1+4*sqrt(3)),NW);
 
</asy>
 
</asy>

Revision as of 19:38, 7 July 2019

Problem

Three points $A,B,C$ are chosen at random on a circle. The probability that there exists a point $P$ inside an equilateral triangle $A_1B_1C_1$ such that $PA_1=BC,PB_1=AC,PC_1=AB$ can be expressed in the form $\frac{m} {n},$ where $m,n$ are relatively prime positive integers. Find $m+n.$

Solution

The problem asks for the probability that point $P$ is inside an equilateral triangle $A_1B_1C_1$. Let $x$, $y$, and $z$ be the three distances from point $P$ to each of the vertices, with $x$ being the longest distance. Let's consider the case in which point $P$ is actually on the line: [asy] unitsize(0.75cm); draw((0,1+4*sqrt(3))--(8,1+4*sqrt(3))); draw((0,1+4*sqrt(3))--(4,1)); draw((0,1+4*sqrt(3))--(4,1)); draw((6,1+4*sqrt(3))--(4,1)); label("$x$",(5,1+2*sqrt(3)),NNW); label("$y$", (4,1+4*sqrt(3)),NW); label("$z$", (8,1+4*sqrt(3)),NW); [/asy]