Difference between revisions of "2006 AIME I Problems/Problem 9"
Tigershark22 (talk | contribs) m (→Solution 1) |
m (→Solution 1) |
||
Line 16: | Line 16: | ||
For <math>y</math> to be an integer, the [[numerator]] must be [[divisible]] by <math>11</math>. This occurs when <math>x=1</math> because <math>1001=91*11</math>. Because only [[even integer]]s are being subtracted from <math>1003</math>, the numerator never equals an even [[multiple]] of <math>11</math>. Therefore, the numerator takes on the value of every [[odd integer | odd]] multiple of <math>11</math> from <math>11</math> to <math>1001</math>. Since the odd multiples are separated by a distance of <math>22</math>, the number of ordered pairs that work is <math>1 + \frac{1001-11}{22}=1 + \frac{990}{22}=46</math>. (We must add 1 because both endpoints are being included.) So the answer is <math>\boxed{046}</math>. | For <math>y</math> to be an integer, the [[numerator]] must be [[divisible]] by <math>11</math>. This occurs when <math>x=1</math> because <math>1001=91*11</math>. Because only [[even integer]]s are being subtracted from <math>1003</math>, the numerator never equals an even [[multiple]] of <math>11</math>. Therefore, the numerator takes on the value of every [[odd integer | odd]] multiple of <math>11</math> from <math>11</math> to <math>1001</math>. Since the odd multiples are separated by a distance of <math>22</math>, the number of ordered pairs that work is <math>1 + \frac{1001-11}{22}=1 + \frac{990}{22}=46</math>. (We must add 1 because both endpoints are being included.) So the answer is <math>\boxed{046}</math>. | ||
+ | |||
+ | |||
+ | For the step above, you may also simply do <math>1001/11 + 1 = 91 + 1 = 92</math> to find how many multiples of <math>11</math> there are in between <math>11</math> and <math>1001</math>. Then, divide <math>92/2</math> to find only the odd solutions. <math>-XxHalo711</math> | ||
-------------- | -------------- |
Revision as of 22:33, 15 June 2019
Contents
Problem
The sequence is geometric with and common ratio where and are positive integers. Given that find the number of possible ordered pairs
Solution 1
So our question is equivalent to solving for positive integers. so .
The product of and is a power of 2. Since both numbers have to be integers, this means that and are themselves powers of 2. Now, let and :
For to be an integer, the numerator must be divisible by . This occurs when because . Because only even integers are being subtracted from , the numerator never equals an even multiple of . Therefore, the numerator takes on the value of every odd multiple of from to . Since the odd multiples are separated by a distance of , the number of ordered pairs that work is . (We must add 1 because both endpoints are being included.) So the answer is .
For the step above, you may also simply do to find how many multiples of there are in between and . Then, divide to find only the odd solutions.
Another way is to write
Since , the answer is just the number of odd integers in , which is, again, .
Solution 2
Using the above method, we can derive that . Now, think about what happens when r is an even power of 2. Then must be an odd power of 2 in order to satisfy the equation which is clearly not possible. Thus the only restriction r has is that it must be an odd power of 2, so , , .... all work for r, until r hits , when it gets greater than , so the greatest value for r is . All that's left is to count the number of odd integers between 1 and 91 (inclusive), which yields .
See also
2006 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.