Difference between revisions of "Conjugate Root Theorem"
Claudeaops (talk | contribs) (Additional Theorem) |
Hashtagmath (talk | contribs) (→Uses) |
||
Line 7: | Line 7: | ||
{{stub}} | {{stub}} | ||
+ | [[Category:Theorems]] |
Revision as of 11:19, 30 May 2019
Theorem
The Conjugate Root Theorem states that if is a polynomial with real coefficients, and is a root of the equation , where , then is also a root. A similar theorem states that if is a polynomial with rational coefficients and is a root of the polynomial, then is also a root.
Uses
This has many uses. If you get a fourth degree polynomial, and you are given that a number in the form of is a root, then you know that in the root. Using the Factor Theorem, you know that is also a root. Thus, you can multiply that out, and divide it by the original polynomial, to get a depressed quadratic equation. Of course, it doesn't have to be a fourth degree polynomial. It could just simplify it a bit.
This article is a stub. Help us out by expanding it.