Difference between revisions of "1956 AHSME Problems/Problem 10"

(Created page with "==Problem== A circle of radius <math>10</math> inches has its center at the vertex <math>C</math> of an equilateral triangle <math>ABC</math> and passes through the other two...")
 
(Problem)
Line 3: Line 3:
 
passes through the other two vertices. The side <math>AC</math> extended through <math>C</math> intersects the circle
 
passes through the other two vertices. The side <math>AC</math> extended through <math>C</math> intersects the circle
 
at <math>D</math>. The number of degrees of angle <math>ADB</math> is:
 
at <math>D</math>. The number of degrees of angle <math>ADB</math> is:
(A) 15 (B) 30 (C) 60 (D) 90 (E) 120
+
<math>(A) 15 (B) 30 (C) 60 (D) 90 (E) 120</math>
 
<asy>
 
<asy>
 
import olympiad;
 
import olympiad;

Revision as of 19:01, 5 May 2019

Problem

A circle of radius $10$ inches has its center at the vertex $C$ of an equilateral triangle $ABC$ and passes through the other two vertices. The side $AC$ extended through $C$ intersects the circle at $D$. The number of degrees of angle $ADB$ is: $(A) 15 (B) 30 (C) 60 (D) 90 (E) 120$ [asy] import olympiad; draw(circle((0,0),10)); dot((0,0)); label("C", (1,-1)); dot((5,5sqrt(3))); dot((-5,-5sqrt(3))); draw((-5,-5sqrt(3))--(5,5sqrt(3))); label("A",(6,5sqrt(3)+1)); label("D",(-6,-5sqrt(3)-1)); draw((0,0)--(10,0)); label("10",(1.5,2.5sqrt(3)+1)); dot((10,0)); label("B",(11,-1)); draw((5,5sqrt(3))--(10,0)); draw(anglemark((10,0),(0,0),(5,5sqrt(3)),60)); label( "60°", (2.5,1.25)); draw((-5,-5sqrt(3))--(10,0)); draw(anglemark((10,0),(-5,-5sqrt(3)),(5,5sqrt(3)),60)); label("?",(-2.5,-5sqrt(3)+2.5)); [/asy]

$ABC$ is an equilateral triangle, so ∠$C$ must be $60$°. Since $D$ is on the circle and ∠$ADB$ contains arc $AB$, we know that ∠$D$ is $30$° $\implies \fbox{B}$.