Difference between revisions of "Fundamental Theorem of Sato"
m |
m |
||
Line 17: | Line 17: | ||
Method 3: Proof by Pigeonhole | Method 3: Proof by Pigeonhole | ||
− | There is only one Sato. By Pigeonhole, either Sato is amazing or he isn't. Fortunately, Sato cannot fit in a pigeonhole; hence, Sato is amazing. (Proved) | + | There is only one Sato. By Pigeonhole, either Sato is amazing or he isn't (in this case, Sato goes in the unamazing pigeonhole). Fortunately, Sato cannot fit in a pigeonhole; hence, Sato is amazing. (Proved) |
Revision as of 19:30, 23 April 2019
The Fundamental Theorem of Sato states the following:
Sato is amazing.
Proof:
Method 1: Proof by Contradiciton
Assume, for contradiction, that Sato is not amazing.
This is absurd. Therefore, Sato is amazing. (Proved)
Method 2: Proof by Authority
Whatever AoPS says is correct, and AoPS says that Mr. Sato is amazing. Thus, Mr. Sato is amazing. (Proved)
Method 3: Proof by Pigeonhole
There is only one Sato. By Pigeonhole, either Sato is amazing or he isn't (in this case, Sato goes in the unamazing pigeonhole). Fortunately, Sato cannot fit in a pigeonhole; hence, Sato is amazing. (Proved)