Difference between revisions of "2019 AIME II Problems/Problem 15"

m (Solution)
(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
In acute triangle <math>ABC</math> points <math>P</math> and <math>Q</math> are the feet of the perpendiculars from <math>C</math> to <math>\overline{AB}</math> and from <math>B</math> to <math>\overline{AC}</math>, respectively. Line <math>PQ</math> intersects the circumcircle of <math>\triangle ABC</math> in two distinct points, <math>X</math> and <math>Y</math>. Suppose <math>XP=10</math>, <math>PQ=25</math>, and <math>QY=15</math>. The value of <math>AB\cdot AC</math> can be written in the form <math>m\sqrt n</math> where <math>m</math> and <math>n</math> are positive relatively prime integers. Find <math>m+n</math>.
+
In acute triangle <math>ABC</math> points <math>P</math> and <math>Q</math> are the feet of the perpendiculars from <math>C</math> to <math>\overline{AB}</math> and from <math>B</math> to <math>\overline{AC}</math>, respectively. Line <math>PQ</math> intersects the circumcircle of <math>\triangle ABC</math> in two distinct points, <math>X</math> and <math>Y</math>. Suppose <math>XP=10</math>, <math>PQ=25</math>, and <math>QY=15</math>. The value of <math>AB\cdot AC</math> can be written in the form <math>m\sqrt n</math> where <math>m</math> and <math>n</math> are positive integers, and <math>n</math> is not divisible by the square of any prime. Find <math>m+n</math>.
  
 
==Solution==
 
==Solution==

Revision as of 02:41, 1 April 2019

Problem

In acute triangle $ABC$ points $P$ and $Q$ are the feet of the perpendiculars from $C$ to $\overline{AB}$ and from $B$ to $\overline{AC}$, respectively. Line $PQ$ intersects the circumcircle of $\triangle ABC$ in two distinct points, $X$ and $Y$. Suppose $XP=10$, $PQ=25$, and $QY=15$. The value of $AB\cdot AC$ can be written in the form $m\sqrt n$ where $m$ and $n$ are positive integers, and $n$ is not divisible by the square of any prime. Find $m+n$.

Solution

Let $AP=a, AQ=b, cos\angle A = k$

Therefore $AB= \frac{b}{k} , AC= \frac{a}{k}$

By power of point, we have $AP*BP=XP*YP , AQ*CQ=YQ*XQ$ Which are simplified to

$400= \frac{ab}{k} - a^2$

$525= \frac{ab}{k} - b^2$

Or

$a^2= \frac{ab}{k} - 400$

$b^2= \frac{ab}{k} - 525$

(1)

Or

$k= \frac{ab}{a^2+400} = \frac{ab}{b^2+525}$

Let $u=a^2+400=b^2+525$ Then, $a=\sqrt{u-400},b=\sqrt{u-525},k=\frac{\sqrt{(u-400)(u-525)}}{u}$


In triangle $APQ$, by law of cosine

$25^2= a^2 + b^2 - 2abk$

Pluging (1)

$625=  \frac{ab}{k} - 400 + \frac{ab}{k} - 525 -2abk$

Or

$\frac{ab}{k} - abk =775$

Substitute everything by $u$

$u- \frac{(u-400)(u-525)}{u} =775$

The quadratic term is cancelled out after simplified

Which gives $u=1400$

Plug back in, $a= \sqrt{1000} , b=\sqrt{775}$

Then

$AB*AC= \frac{a}{k} \frac{b}{k} = \frac{ab}{\frac{ab}{u} *\frac{ab}{u} } = \frac{u^2}{ab} = \frac{1400 * 1400}{ \sqrt{ 1000* 875 }} = 560 \sqrt{14}$

So the final answer is $560 + 14 = \boxed{574}$

By SpecialBeing2017

See Also

2019 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png