Difference between revisions of "2019 AIME II Problems/Problem 15"
Brendanb4321 (talk | contribs) m (→Problem) |
m (→Solution) |
||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
+ | Let <math>AP=a, AQ=b, cos\angle A = k</math> | ||
+ | |||
+ | Therefore <math>AB= \frac{b}{k} , AC= \frac{a}{k} | ||
+ | |||
+ | By power of point, we have | ||
+ | </math>AP*BP=XP*YP , AQ*CQ=YQ*XQ<math> | ||
+ | Which are simplified to | ||
+ | </math>400= \frac{ab}{k} - a^2<math> | ||
+ | </math>525= \frac{ab}{k} - b^2<math> | ||
+ | Or | ||
+ | </math>a^2= \frac{ab}{k} - 400<math> | ||
+ | </math>b^2= \frac{ab}{k} - 525<math> | ||
+ | (1) | ||
+ | |||
+ | Or | ||
+ | </math>k= \frac{ab}{a^2+400} = \frac{ab}{b^2+525} | ||
+ | |||
+ | Let <math>u=a^2+400=b^2+525</math> | ||
+ | Then, <math>a=\sqrt{u-400},b=\sqrt{u-525},k=\frac{\sqrt{(u-400)(u-525)}}{u} | ||
+ | |||
+ | |||
+ | In triangle </math>APQ<math>, by law of cosine | ||
+ | |||
+ | </math>25^2= a^2 + b^2 - 2abk<math> | ||
+ | |||
+ | Pluging (1) | ||
+ | |||
+ | </math>625= \frac{ab}{k} - 400 + \frac{ab}{k} - 525 -2abk<math> | ||
+ | |||
+ | Or | ||
+ | |||
+ | </math> \frac{ab}{k} - abk =775<math> | ||
+ | |||
+ | Substitute everything by </math>u<math> | ||
+ | |||
+ | </math>u- \frac{(u-400)(u-525)}{u} =775<math> | ||
+ | |||
+ | The quadratic term is cancelled out after simplified | ||
+ | |||
+ | Which gives </math>u=1400<math> | ||
+ | |||
+ | Plug back in, </math>a= \sqrt{1000} , b=\sqrt{775}<math> | ||
+ | |||
+ | Then | ||
+ | |||
+ | </math>AB*AC= \frac{a}{k} \frac{b}{k} = \frac{ab}{\frac{ab}{u} *\frac{ab}{u} } = \frac{u^2}{ab} | ||
+ | = \frac{1400 * 1400}{ \sqrt{ 1000* 875 }} = 560 \sqrt{14} | ||
+ | |||
+ | So the final answer is 560 + 14 = 574 | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2019|n=II|num-b=14|after=Last Question}} | {{AIME box|year=2019|n=II|num-b=14|after=Last Question}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 19:14, 22 March 2019
Problem
In acute triangle points and are the feet of the perpendiculars from to and from to , respectively. Line intersects the circumcircle of in two distinct points, and . Suppose , , and . The value of can be written in the form where and are positive relatively prime integers. Find .
Solution
Let
Therefore $AB= \frac{b}{k} , AC= \frac{a}{k}
By power of point, we have$ (Error compiling LaTeX. Unknown error_msg)AP*BP=XP*YP , AQ*CQ=YQ*XQ400= \frac{ab}{k} - a^2$$ (Error compiling LaTeX. Unknown error_msg)525= \frac{ab}{k} - b^2a^2= \frac{ab}{k} - 400$$ (Error compiling LaTeX. Unknown error_msg)b^2= \frac{ab}{k} - 525$(1)
Or$ (Error compiling LaTeX. Unknown error_msg)k= \frac{ab}{a^2+400} = \frac{ab}{b^2+525}
Let Then, $a=\sqrt{u-400},b=\sqrt{u-525},k=\frac{\sqrt{(u-400)(u-525)}}{u}
In triangle$ (Error compiling LaTeX. Unknown error_msg)APQ25^2= a^2 + b^2 - 2abk625= \frac{ab}{k} - 400 + \frac{ab}{k} - 525 -2abk \frac{ab}{k} - abk =775u$$ (Error compiling LaTeX. Unknown error_msg)u- \frac{(u-400)(u-525)}{u} =775$The quadratic term is cancelled out after simplified
Which gives$ (Error compiling LaTeX. Unknown error_msg)u=1400a= \sqrt{1000} , b=\sqrt{775}AB*AC= \frac{a}{k} \frac{b}{k} = \frac{ab}{\frac{ab}{u} *\frac{ab}{u} } = \frac{u^2}{ab} = \frac{1400 * 1400}{ \sqrt{ 1000* 875 }} = 560 \sqrt{14}
So the final answer is 560 + 14 = 574
See Also
2019 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.