Difference between revisions of "2019 AIME II Problems/Problem 1"
Brendanb4321 (talk | contribs) m |
(→Solution) |
||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
+ | |||
+ | [asy] | ||
+ | size(10cm); | ||
+ | pair A=(0,0), B=(9,0), C=(15,8), D=(-6,8), C_1=(15,0), P=(9/2,12/5); | ||
+ | draw(B--C--D--A); draw(C--P--D); draw(B--C_1--C,dashed); draw((A+B)/2--(C+D)/2,dashed); | ||
+ | label("<math>A</math>",A,SW); label("<math>B</math>",B,S); label("<math>C'</math>",C_1,SE); label("<math>C</math>",C,NE); label("<math>D</math>",D,NW); label("<math>P</math>",P+(0.5,0),E); | ||
+ | draw(A--B--P--cycle,red+linewidth(1.1)); | ||
+ | dot(A); dot(B); dot(C); dot(D); dot(P); dot(C_1); | ||
+ | label("<math>9</math>",(A+B)/2,dir(A--B)*dir(-90)); label("<math>10</math>",(B+C)/2,dir(B-C)*dir(90)); label("<math>6</math>",(B+C_1)/2,dir(B-C_1)*dir(90)); label("<math>8</math>",(C+C_1)/2,dir(C_1-C)*dir(90)); label("<math>21</math>",(C+D)/2,dir(C--D)*dir(-90)); label("<math>\frac{12}{5}</math>",(2*P+A+B)/4+(-0.1,-0.3),E); | ||
+ | [/asy] | ||
+ | |||
+ | Note that <math>17^2-15^2=8^2=10^2-6^2</math> and <math>15-6=9</math> so if <math>C'</math> is the projection of <math>C</math> onto <math>AB</math> then <math>AC'=15,BC'=6,CC'=8</math>. It follows that <math>CD=21</math>. Let the diagonals <math>AC</math> and <math>BD</math> intersect at <math>P</math>, then <math>\triangle{PAB}\sim\triangle{PCD}</math> with similarity factor <math>\frac{9}{21}</math>. Thus the height of <math>\triangle{PAB}</math> is <math>\frac{9}{9+21}\cdot8=\frac{12}{5}</math> so <math>\left[PAB\right]=\frac{1}{2}\cdot9\cdot\frac{12}{5}=\frac{54}{5}</math> and hence the answer is <math>\boxed{059}</math> as desired. |
Revision as of 16:35, 22 March 2019
Problem
Two different points, and , lie on the same side of line so that and are congruent with , , and . The intersection of these two triangular regions has area , where and are relatively prime positive integers. Find .
Solution
[asy] size(10cm); pair A=(0,0), B=(9,0), C=(15,8), D=(-6,8), C_1=(15,0), P=(9/2,12/5); draw(B--C--D--A); draw(C--P--D); draw(B--C_1--C,dashed); draw((A+B)/2--(C+D)/2,dashed); label("",A,SW); label("",B,S); label("",C_1,SE); label("",C,NE); label("",D,NW); label("",P+(0.5,0),E); draw(A--B--P--cycle,red+linewidth(1.1)); dot(A); dot(B); dot(C); dot(D); dot(P); dot(C_1); label("",(A+B)/2,dir(A--B)*dir(-90)); label("",(B+C)/2,dir(B-C)*dir(90)); label("",(B+C_1)/2,dir(B-C_1)*dir(90)); label("",(C+C_1)/2,dir(C_1-C)*dir(90)); label("",(C+D)/2,dir(C--D)*dir(-90)); label("",(2*P+A+B)/4+(-0.1,-0.3),E); [/asy]
Note that and so if is the projection of onto then . It follows that . Let the diagonals and intersect at , then with similarity factor . Thus the height of is so and hence the answer is as desired.