Difference between revisions of "2019 AIME II Problems/Problem 9"
(Created page with "Why are you on this page? You should be preparing for this contest, not wasting your time looking for the solutions!") |
Scrabbler94 (talk | contribs) (add solution) |
||
Line 1: | Line 1: | ||
− | + | ==Problem 9== | |
+ | Call a positive integer <math>n</math> <math>k</math>-<i>pretty</i> if <math>n</math> has exactly <math>k</math> positive divisors and <math>n</math> is divisible by <math>k</math>. For example, <math>18</math> is <math>6</math>-pretty. Let <math>S</math> be the sum of positive integers less than <math>2019</math> that are <math>20</math>-pretty. Find <math>\frac{S}{20}</math>. | ||
+ | |||
+ | ==Solution== | ||
+ | Every 20-pretty integer can be written in form <math>n = 2^a 5^b k</math>, where <math>a \ge 2</math>, <math>b \ge 1</math>, <math>\gcd(k,10) = 1</math>, and <math>d(n) = 20</math>, where <math>d(n)</math> is the number of divisors of <math>n</math>. Thus, we have <math>20 = (a+1)(b+1)d(k)</math>, using the fact that the divisor function is multiplicative. As <math>(a+1)(b+1)</math> must be a divisor of 20, there are not many cases to check. | ||
+ | |||
+ | If <math>a+1 = 4</math>, then <math>b+1 = 5</math>. But this leads to no solutions, as <math>(a,b) = (3,4)</math> gives <math>2^3 5^4 > 2019</math>. | ||
+ | |||
+ | If <math>a+1 = 5</math>, then <math>b+1 = 2</math> or <math>4</math>. The first case gives <math>n = 2^4 \cdot 5^1 \cdot p</math> where <math>p</math> is a prime other than 2 or 5. Thus we have <math>80p < 2019 \implies p = 3, 7, 11, 13, 17, 19, 23</math>. The sum of all such <math>n</math> is <math>80(3+7+11+13+17+19+23) = 5760</math>. In the second case <math>b+1 = 4</math> and <math>d(k) = 1</math>, and there is one solution <math>n = 2^4 \cdot 5^3 = 2000</math>. | ||
+ | |||
+ | If <math>a+1 = 10</math>, then <math>b+1 = 2</math>, but this gives <math>2^9 \cdot 5^1 > 2019</math>. No other values for <math>a+1</math> work. | ||
+ | |||
+ | Then we have <math>\frac{S}{20} = \frac{80(3+7+11+13+17+19+23) + 2000}{20} = 372 + 100 = \boxed{472}</math>. | ||
+ | |||
+ | -scrabbler94 | ||
+ | |||
+ | ==See Also== | ||
+ | {{AIME box|year=2019|n=II|num-b=8|num-a=10}} | ||
+ | {{MAA Notice}} |
Revision as of 16:04, 22 March 2019
Problem 9
Call a positive integer -pretty if has exactly positive divisors and is divisible by . For example, is -pretty. Let be the sum of positive integers less than that are -pretty. Find .
Solution
Every 20-pretty integer can be written in form , where , , , and , where is the number of divisors of . Thus, we have , using the fact that the divisor function is multiplicative. As must be a divisor of 20, there are not many cases to check.
If , then . But this leads to no solutions, as gives .
If , then or . The first case gives where is a prime other than 2 or 5. Thus we have . The sum of all such is . In the second case and , and there is one solution .
If , then , but this gives . No other values for work.
Then we have .
-scrabbler94
See Also
2019 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.