Difference between revisions of "2019 AIME I Problems/Problem 2"
(→Problem 2) |
Expilncalc (talk | contribs) (Added problem and solution) |
||
Line 1: | Line 1: | ||
− | |||
− | |||
==Problem 2== | ==Problem 2== | ||
Jenn randomly chooses a number <math>J</math> from <math>1, 2, 3,\ldots, 19, 20</math>. Bela then randomly chooses a number <math>B</math> from <math>1, 2, 3,\ldots, 19, 20</math> distinct from <math>J</math>. The value of <math>B - J</math> is at least <math>2</math> with a probability that can be expressed in the form <math>\frac{m}{n}</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | Jenn randomly chooses a number <math>J</math> from <math>1, 2, 3,\ldots, 19, 20</math>. Bela then randomly chooses a number <math>B</math> from <math>1, 2, 3,\ldots, 19, 20</math> distinct from <math>J</math>. The value of <math>B - J</math> is at least <math>2</math> with a probability that can be expressed in the form <math>\frac{m}{n}</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
==Solution== | ==Solution== | ||
− | + | Realize that by symmetry, the desired probability is equal to the probability that <math>J - B</math> is at most <math>-2</math>, which is <math>\frac{1-P}{2}</math> where <math>P</math> is the probability that <math>B</math> and <math>J</math> differ by 1 (no zero, because the two numbers are distinct). There are <math>20 * 19 = 380</math> total possible combinations of <math>B</math> and <math>J</math>, and <math>1 + 18 * 2 + 1 = 38</math> ones that form <math>P</math>, so <math>P = \frac{38}{380} = {1}{10}</math>. Therefore the answer is <math>\frac{9}{20} \rightarrow \boxed{029}</math>. | |
==See Also== | ==See Also== | ||
{{AIME box|year=2019|n=I|num-b=1|num-a=3}} | {{AIME box|year=2019|n=I|num-b=1|num-a=3}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 19:48, 14 March 2019
Problem 2
Jenn randomly chooses a number from . Bela then randomly chooses a number from distinct from . The value of is at least with a probability that can be expressed in the form where and are relatively prime positive integers. Find .
Solution
Realize that by symmetry, the desired probability is equal to the probability that is at most , which is where is the probability that and differ by 1 (no zero, because the two numbers are distinct). There are total possible combinations of and , and ones that form , so . Therefore the answer is .
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.