Difference between revisions of "2015 AIME I Problems/Problem 7"
(→Solution) |
(→Solution 1) |
||
Line 64: | Line 64: | ||
L=foot(M,H,G); | L=foot(M,H,G); | ||
draw(K--N--M--L); | draw(K--N--M--L); | ||
− | |||
− | |||
label("$A$",A,NW); | label("$A$",A,NW); | ||
label("$B$",B,SW); | label("$B$",B,SW); |
Revision as of 21:50, 5 March 2019
Contents
Problem
7. In the diagram below, is a square. Point is the midpoint of . Points and lie on , and and lie on and , respectively, so that is a square. Points and lie on , and and lie on and , respectively, so that is a square. The area of is 99. Find the area of .
Solution 1
Let us find the proportion of the side length of and . Let the side length of and the side length of .
Now, examine . We know , and triangles and are similar to since they are triangles. Thus, we can rewrite in terms of the side length of .
Now examine . We can express this length in terms of since . By using similar triangles as in the first part, we have
Now, it is trivial to see that
Solution 2
We begin by denoting the length , giving us and . Since angles and are complementary, we have that (and similarly the rest of the triangles are triangles). We let the sidelength of be , giving us:
and .
Since ,
,
Solving for in terms of yields .
We now use the given that , implying that . We also draw the perpendicular from to and label the point of intersection :
This gives that and
Since = , we get
So our final answer is
See also
2015 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.