Difference between revisions of "2019 AMC 10A Problems/Problem 19"
m (→Solution 2) |
Sevenoptimus (talk | contribs) m (Improved clarity and formatting) |
||
Line 12: | Line 12: | ||
==Solution 2== | ==Solution 2== | ||
− | Let <math>a=x+\tfrac{5}{2}</math>. Then <math>(x+1)(x+2)(x+3)(x+4)</math> becomes <math>(a-\tfrac{3}{2})(a-\tfrac{1}{2})(a+\tfrac{1}{2})(a+\tfrac{3}{2})</math>. | + | Let <math>a=x+\tfrac{5}{2}</math>. Then the expression <math>(x+1)(x+2)(x+3)(x+4)</math> becomes <math>\left(a-\tfrac{3}{2}\right)\left(a-\tfrac{1}{2}\right)\left(a+\tfrac{1}{2}\right)\left(a+\tfrac{3}{2}\right)</math>. |
− | We can use the difference of two squares to get <math>(a^2-\tfrac{9}{4})(a^2-\tfrac{1}{4})</math>, and expand this to get <math>a^4-\tfrac{5}{2}a^2+\tfrac{9}{16}</math>. | + | We can now use the difference of two squares to get <math>\left(a^2-\tfrac{9}{4}\right)\left(a^2-\tfrac{1}{4}\right)</math>, and expand this to get <math>a^4-\tfrac{5}{2}a^2+\tfrac{9}{16}</math>. |
− | Refactor this by completing the square to get <math>(a^2-\tfrac{5}{4})^2-1</math>, which has a minimum value of <math>-1</math>. The answer is thus <math>2019-1=\boxed{\textbf{(B) }2018}</math>. | + | Refactor this by completing the square to get <math>\left(a^2-\tfrac{5}{4}\right)^2-1</math>, which has a minimum value of <math>-1</math>. The answer is thus <math>2019-1=\boxed{\textbf{(B) }2018}</math>. |
− | ==Solution 3 ( | + | ==Solution 3 (calculus)== |
Similar to Solution 1, grouping the first and last terms and the middle terms, we get <math>(x^2+5x+4)(x^2+5x+6)+2019</math>. | Similar to Solution 1, grouping the first and last terms and the middle terms, we get <math>(x^2+5x+4)(x^2+5x+6)+2019</math>. | ||
Line 34: | Line 34: | ||
To minimize the result, we use <math>y=-5</math>. Hence, the minimum is <math>(-5+4)(-5+6)=-1</math>, so <math>-1+2019 = \boxed{\textbf{(B) }2018}</math>. | To minimize the result, we use <math>y=-5</math>. Hence, the minimum is <math>(-5+4)(-5+6)=-1</math>, so <math>-1+2019 = \boxed{\textbf{(B) }2018}</math>. | ||
− | ''Note'': | + | ''Note'': We could also have used the result that minimum/maximum point of a parabola <math>y = ax^2 + bx + c</math> occurs at <math>x=-\frac{b}{2a}</math>. |
==Solution 4== | ==Solution 4== | ||
− | The expression is negative when an odd number of the factors are negative. This happens when <math>-2 < x < -1</math> or <math>-4 < x -3</math>. Plugging in <math>x = -\frac32</math> or <math>x = -\frac72</math> yields <math>-\frac{15}{16}</math>, which is very close to <math>-1</math>. <math>-1 + 2019 = \boxed{\textbf{(B) }2018}</math>. | + | The expression is negative when an odd number of the factors are negative. This happens when <math>-2 < x < -1</math> or <math>-4 < x -3</math>. Plugging in <math>x = -\frac32</math> or <math>x = -\frac72</math> yields <math>-\frac{15}{16}</math>, which is very close to <math>-1</math>. Thus the answer is <math>-1 + 2019 = \boxed{\textbf{(B) }2018}</math>. |
==Solution 5 (using the answer choices) == | ==Solution 5 (using the answer choices) == |
Revision as of 00:24, 27 February 2019
Contents
Problem
What is the least possible value of where is a real number?
Solution 1
Grouping the first and last terms and two middle terms gives , which can be simplified to . Noting that squares are nonnegative, and verifying that for some real , the answer is .
Solution 2
Let . Then the expression becomes .
We can now use the difference of two squares to get , and expand this to get .
Refactor this by completing the square to get , which has a minimum value of . The answer is thus .
Solution 3 (calculus)
Similar to Solution 1, grouping the first and last terms and the middle terms, we get .
Letting , we get the expression . Now, we can find the critical points of to minimize the function:
To minimize the result, we use . Hence, the minimum is , so .
Note: We could also have used the result that minimum/maximum point of a parabola occurs at .
Solution 4
The expression is negative when an odd number of the factors are negative. This happens when or . Plugging in or yields , which is very close to . Thus the answer is .
Solution 5 (using the answer choices)
Using the answer choices, we know that , , and are impossible since can be negative (as seen when ). Plug in to see that it becomes , so round this to .
Video Solution
For those who want a video solution: https://www.youtube.com/watch?v=Mfa7j2BoNjI
See Also
2019 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.