Difference between revisions of "2000 AMC 12 Problems/Problem 1"
m |
m |
||
Line 1: | Line 1: | ||
− | In the year <math>2001</math>, the United States will host the International Mathematical Olympiad. Let <math> \displaystyle I,M,</math> and <math>\displaystyle O</math> be distinct positive | + | In the year <math>2001</math>, the United States will host the [[International Mathematical Olympiad]]. Let <math> \displaystyle I,M,</math> and <math>\displaystyle O</math> be distinct [[positive integer]]s such that the product <math>I \cdot M \cdot O = 2001 </math>. What is the largest possible value of the sum <math>\displaystyle I + M + O</math>? |
<math> \mathrm{(A) \ 23 } \qquad \mathrm{(B) \ 55 } \qquad \mathrm{(C) \ 99 } \qquad \mathrm{(D) \ 111 } \qquad \mathrm{(E) \ 671 } </math> | <math> \mathrm{(A) \ 23 } \qquad \mathrm{(B) \ 55 } \qquad \mathrm{(C) \ 99 } \qquad \mathrm{(D) \ 111 } \qquad \mathrm{(E) \ 671 } </math> | ||
Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
− | The sum is the highest if two | + | The sum is the highest if two [[factor]]s are the lowest! |
So, <math>1 \cdot 3 \cdot 667 = 2001</math> and <math>1+3+667=671 \Longrightarrow \mathrm{(E)}</math>. | So, <math>1 \cdot 3 \cdot 667 = 2001</math> and <math>1+3+667=671 \Longrightarrow \mathrm{(E)}</math>. | ||
Revision as of 10:10, 15 October 2006
In the year , the United States will host the International Mathematical Olympiad. Let and be distinct positive integers such that the product . What is the largest possible value of the sum ?
Solution
The sum is the highest if two factors are the lowest! So, and .