Difference between revisions of "2019 AMC 10A Problems/Problem 19"

(Fixed formatting and grammar)
(Solution)
Line 6: Line 6:
 
<math>\textbf{(A) } 2017 \qquad\textbf{(B) } 2018 \qquad\textbf{(C) } 2019 \qquad\textbf{(D) } 2020 \qquad\textbf{(E) } 2021</math>
 
<math>\textbf{(A) } 2017 \qquad\textbf{(B) } 2018 \qquad\textbf{(C) } 2019 \qquad\textbf{(D) } 2020 \qquad\textbf{(E) } 2021</math>
  
==Solution==
+
==Solution 1==
 
Grouping the first and last terms and two middle terms gives <math>(x^2+5x+4)(x^2+5x+6)+2019</math>, which can be simplified as <math>(x^2+5x+5)^2-1+2019</math>. Since squares are nonnegative, the answer is <math>\boxed{\textbf{(B) } 2018}</math>.
 
Grouping the first and last terms and two middle terms gives <math>(x^2+5x+4)(x^2+5x+6)+2019</math>, which can be simplified as <math>(x^2+5x+5)^2-1+2019</math>. Since squares are nonnegative, the answer is <math>\boxed{\textbf{(B) } 2018}</math>.
  

Revision as of 18:52, 11 February 2019

Problem

What is the least possible value of \[(x+1)(x+2)(x+3)(x+4)+2019\]where $x$ is a real number?

$\textbf{(A) } 2017 \qquad\textbf{(B) } 2018 \qquad\textbf{(C) } 2019 \qquad\textbf{(D) } 2020 \qquad\textbf{(E) } 2021$

Solution 1

Grouping the first and last terms and two middle terms gives $(x^2+5x+4)(x^2+5x+6)+2019$, which can be simplified as $(x^2+5x+5)^2-1+2019$. Since squares are nonnegative, the answer is $\boxed{\textbf{(B) } 2018}$.

Solution 2

Let $a=x+\tfrac{5}{2}$. Then $(x+1)(x+2)(x+3)(x+4)$ becomes $(a-\tfrac{3}{2})(a-\tfrac{1}{2})(a+\tfrac{1}{2})(a+\tfrac{3}{2})$.

We can use difference of squares to get $(a^2-\tfrac{9}{4})(a^2-\tfrac{1}{4})$, and expand this to get $a^4-\tfrac{5}{2}a+\tfrac{9}{16}$.

Refactor this by completing the square to get $(a^2-\tfrac{5}{4})^2-1$, which has a minimum value of $-1$. The answer is thus $2019-1=\boxed{2018}$.

-WannabeCharmander

Solution 3 (using calculus)

Similar to Solution 1, grouping the first and last terms and the middle terms, we get $(x^2+5x+4)(x^2+5x+6)+2019$.

Letting $y=x^2+5x$, we get the expression $(y+4)(y+6)+2019$. Now, we can find the critical points of $(y+4)(y+6)$ to minimize the function:

$\frac{d}{dx}(y^2+10y+24)=0$

$2y+10=0$

$2y(y+5)=0$

$y=-5,0$

To minimize the result, we use $y=-5$. Hence, the minimum is $(-5+4)(-5+6)=-1$, so $-1+2019 = \boxed{\textbf{(B) }2018}$.

(inspired by solution by oO8715_alexOo)

Note: The minimum/maximum of a parabola occurs at $x=-\frac{b}{2a}$.

Solution 4

The expression is negative when an odd number of the factors are negative. This happens when $-2 < x < -1$ or $-4 < x -3$. Plugging in $x = -\frac32$ or $x = -\frac72$ yields $-\frac{15}{16}$, which is very close to $-1$. $-1 + 2019 = \boxed{\textbf{(B) }2018}$.

Video Solution

For those who want a video solution: https://www.youtube.com/watch?v=Mfa7j2BoNjI

See Also

2019 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png