Difference between revisions of "2019 AMC 10A Problems/Problem 1"

m
Line 1: Line 1:
 +
==Problem 1==
 +
What is the value of <cmath>2^{\left(0^{\left(1^9\right)}\right)}+\left(\left(2^0\right)^1\right)^9?</cmath>
 +
<math>\textbf{(A) } 0 \qquad\textbf{(B) } 1 \qquad\textbf{(C) } 2 \qquad\textbf{(D) } 3 \qquad\textbf{(E) } 4</math>
 +
 +
==Solution==
 
The first part can be rewritten as <cmath>2^{0^{1}}=2^{0}=1</cmath>
 
The first part can be rewritten as <cmath>2^{0^{1}}=2^{0}=1</cmath>
 
The second part is <cmath>(1^{1})^{9}=1^{9}=1</cmath>
 
The second part is <cmath>(1^{1})^{9}=1^{9}=1</cmath>
Adding these up gives (C) <cmath>2</cmath>
+
Adding these up gives <math>\textbf{(C) }2</math>
 +
 
 +
== See Also ==
 +
 
 +
{{AMC10 box|year=2019|ab=A|before=First Problem|num-a=2}}
 +
{{MAA Notice}}

Revision as of 16:11, 9 February 2019

Problem 1

What is the value of \[2^{\left(0^{\left(1^9\right)}\right)}+\left(\left(2^0\right)^1\right)^9?\] $\textbf{(A) } 0 \qquad\textbf{(B) } 1 \qquad\textbf{(C) } 2 \qquad\textbf{(D) } 3 \qquad\textbf{(E) } 4$

Solution

The first part can be rewritten as \[2^{0^{1}}=2^{0}=1\] The second part is \[(1^{1})^{9}=1^{9}=1\] Adding these up gives $\textbf{(C) }2$

See Also

2019 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png