Difference between revisions of "1992 AIME Problems/Problem 3"
(→Solution) |
m |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | A tennis player computes her win ratio by dividing the number of matches she has won by the total number of matches she has played. At the start of a weekend, her win ratio is exactly <math>\displaystyle.500</math>. During the weekend, she plays four matches, winning three and losing one. At the end of the weekend, her win ratio is greater than <math>\displaystyle .503</math>. What's the largest number of matches she could've won before the weekend began? | + | A tennis player computes her win [[ratio]] by dividing the number of matches she has won by the total number of matches she has played. At the start of a weekend, her win ratio is exactly <math>\displaystyle.500</math>. During the weekend, she plays four matches, winning three and losing one. At the end of the weekend, her win ratio is greater than <math>\displaystyle .503</math>. What's the largest number of matches she could've won before the weekend began? |
== Solution == | == Solution == | ||
− | Let <math>\displaystyle n</math> be the number of matches won, so that <math>\displaystyle \frac{n}{2n}=\frac{1}{2}</math>, and <math>\displaystyle \frac{n+3}{2n+4}>\frac{503}{1000}</math>. Cross | + | Let <math>\displaystyle n</math> be the number of matches won, so that <math>\displaystyle \frac{n}{2n}=\frac{1}{2}</math>, and <math>\displaystyle \frac{n+3}{2n+4}>\frac{503}{1000}</math>. [[Cross multiply]]ing, <math>\displaystyle 1000n+3000>1006n+2012</math>, and <math>\displaystyle n<\frac{988}{6}</math>. Thus, the answer is <math>\displaystyle 164</math>. |
== See also == | == See also == | ||
+ | |||
+ | * [[1992 AIME Problems/Problem 2 | Previous problem]] | ||
+ | * [[1992 AIME Problems/Problem 4 | Next problem]] | ||
* [[1992 AIME Problems]] | * [[1992 AIME Problems]] | ||
+ | |||
+ | [[Category:Introductory Algebra Problems]] |
Revision as of 10:53, 15 September 2006
Problem
A tennis player computes her win ratio by dividing the number of matches she has won by the total number of matches she has played. At the start of a weekend, her win ratio is exactly . During the weekend, she plays four matches, winning three and losing one. At the end of the weekend, her win ratio is greater than . What's the largest number of matches she could've won before the weekend began?
Solution
Let be the number of matches won, so that , and . Cross multiplying, , and . Thus, the answer is .