Difference between revisions of "2005 AMC 12B Problems/Problem 22"
Solzonmars (talk | contribs) (→Solution) |
|||
Line 15: | Line 15: | ||
</math> | </math> | ||
− | == Solution == | + | == Solution 1 == |
Since <math>|z_0|=1</math>, let <math>z_0=e^{i\theta_0}</math>, where <math>\theta_0</math> is an [[argument]] of <math>z_0</math>. | Since <math>|z_0|=1</math>, let <math>z_0=e^{i\theta_0}</math>, where <math>\theta_0</math> is an [[argument]] of <math>z_0</math>. | ||
We will prove by induction that <math>z_n=e^{i\theta_n}</math>, where <math>\theta_n=2^n(\theta_0+\frac{\pi}{2})-\frac{\pi}{2}</math>. | We will prove by induction that <math>z_n=e^{i\theta_n}</math>, where <math>\theta_n=2^n(\theta_0+\frac{\pi}{2})-\frac{\pi}{2}</math>. | ||
Line 37: | Line 37: | ||
</cmath> | </cmath> | ||
The value of <math>\theta_0</math> only matters [[modulo]] <math>2\pi</math>. Since <math>\frac{k+2^{2005}}{2^{2004}}\pi\equiv\frac{k}{2^{2004}}\pi\mod 2\pi</math>, k can take values from 0 to <math>2^{2005}-1</math>, so the answer is <math>2^{2005}\Rightarrow\boxed{E}</math> | The value of <math>\theta_0</math> only matters [[modulo]] <math>2\pi</math>. Since <math>\frac{k+2^{2005}}{2^{2004}}\pi\equiv\frac{k}{2^{2004}}\pi\mod 2\pi</math>, k can take values from 0 to <math>2^{2005}-1</math>, so the answer is <math>2^{2005}\Rightarrow\boxed{E}</math> | ||
+ | |||
+ | == Solution 2 == | ||
+ | Let <math>z_0 = \cos \theta + i\sin \theta</math>. | ||
+ | <cmath>z_1 = \frac {iz_{0}}{\overline {z_{0}}} = \frac{i(\cos \theta + i\sin \theta)}{\cos \theta - i\sin \theta} = i(\cos \theta + i\sin \theta)^2 = i(\cos 2\theta + i\sin 2\theta) = ie^{i2\theta}</cmath> | ||
+ | <cmath>z_2 = \frac {iz_{1}}{\overline {z_{1}}} = \frac{i(\cos 2\theta + i\sin 2\theta)}{\cos 2\theta - \sin 2\theta} = i(\cos 2\theta + i\sin 2\theta)^{2} = i(\cos 2^2\theta + i\sin 2^2\theta) = ie^{i2^2\theta}</cmath> | ||
+ | Repeating through this recursive process, we can quickly see that | ||
+ | <cmath>z_{2005} = ie^{i2^{2005}\theta} = i(\cos 2^{2005}\theta + i\sin 2^{2005}\theta) = 1</cmath> | ||
+ | Thus, <math>\sin 2^{2005}\theta = -1</math>. The solutions for <math>\theta</math> are thus <math>\frac{\frac{3\pi}{2}+2\pi k} {2^{2005}}</math> where <math>k = 0,1,2...(2^{2005}-1)</math>. The answer is <math>2^{2005}\Rightarrow\boxed{E}</math>. (Author: Patrick Yin) | ||
== See Also == | == See Also == |
Revision as of 02:47, 29 January 2019
Contents
Problem
A sequence of complex numbers is defined by the rule
where is the complex conjugate of and . Suppose that and . How many possible values are there for ?
Solution 1
Since , let , where is an argument of . We will prove by induction that , where .
Base Case: trivial
Inductive Step: Suppose the formula is correct for , then Since the formula is proven
, where is an integer. Therefore, The value of only matters modulo . Since , k can take values from 0 to , so the answer is
Solution 2
Let . Repeating through this recursive process, we can quickly see that Thus, . The solutions for are thus where . The answer is . (Author: Patrick Yin)
See Also
2005 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.