Difference between revisions of "2017 AMC 10B Problems/Problem 24"
Stormersyle (talk | contribs) |
|||
Line 12: | Line 12: | ||
==Solution 3== | ==Solution 3== | ||
WLOG, let the centroid of <math>\triangle ABC</math> be <math>G = (1, 1)</math> and let point <math>A</math> be <math>(-1, -1)</math>. It is known that the centroid is equidistant from the three vertices of <math>\triangle ABC</math>. Because we have the coordinates of both <math>A</math> and <math>G</math>, we know that the distance from <math>G</math> to any vertice of <math>\triangle ABC</math> is <math>\sqrt{(1-(-1))^2+(1-(-1))^2} = 2\sqrt{2}</math>. Therefore, <math>AG=BG=CG=2\sqrt{2}</math>. It follows that from <math>\triangle ABG</math>, where <math>AG=BG=2\sqrt{2}</math> and <math>\angle AGB = \dfrac{360^{\circ}}{3} = 120^{\circ}</math>, <math>[\triangle ABG]= \dfrac{(2\sqrt{2})^2 \cdot \sin(120)}{2} = 4 \cdot \dfrac{\sqrt{3}}{2} = 2\sqrt{3}</math> using the formula for the area of a triangle with sine <math>\left([\triangle ABC]= \dfrac{1}{2} AB \cdot BC \sin(\angle ABC)\right)</math>. Because <math>\triangle ACG</math> and <math>\triangle BCG</math> are congruent to <math>\triangle ABG</math>, they also have an area of <math>2\sqrt{3}</math>. Therefore, <math>[\triangle ABC] = 3(2\sqrt{3}) = 6\sqrt{3}</math>. Squaring that gives us the answer of <math>\boxed{\textbf{(C) }108}</math>. | WLOG, let the centroid of <math>\triangle ABC</math> be <math>G = (1, 1)</math> and let point <math>A</math> be <math>(-1, -1)</math>. It is known that the centroid is equidistant from the three vertices of <math>\triangle ABC</math>. Because we have the coordinates of both <math>A</math> and <math>G</math>, we know that the distance from <math>G</math> to any vertice of <math>\triangle ABC</math> is <math>\sqrt{(1-(-1))^2+(1-(-1))^2} = 2\sqrt{2}</math>. Therefore, <math>AG=BG=CG=2\sqrt{2}</math>. It follows that from <math>\triangle ABG</math>, where <math>AG=BG=2\sqrt{2}</math> and <math>\angle AGB = \dfrac{360^{\circ}}{3} = 120^{\circ}</math>, <math>[\triangle ABG]= \dfrac{(2\sqrt{2})^2 \cdot \sin(120)}{2} = 4 \cdot \dfrac{\sqrt{3}}{2} = 2\sqrt{3}</math> using the formula for the area of a triangle with sine <math>\left([\triangle ABC]= \dfrac{1}{2} AB \cdot BC \sin(\angle ABC)\right)</math>. Because <math>\triangle ACG</math> and <math>\triangle BCG</math> are congruent to <math>\triangle ABG</math>, they also have an area of <math>2\sqrt{3}</math>. Therefore, <math>[\triangle ABC] = 3(2\sqrt{3}) = 6\sqrt{3}</math>. Squaring that gives us the answer of <math>\boxed{\textbf{(C) }108}</math>. | ||
+ | |||
+ | ==Solution 4 (5-second sol)== | ||
+ | WLOG let the centroid of the triangle be <math>(1, 1)</math>. By symmetry, one of the vertices is <math>(-1, -1)</math>. The distance between these two points is <math>2\sqrt2</math>, so the height of the triangle is <math>3\sqrt 2</math> because the centroid divides each median into a 2:1 ratio. This means that the side length of the triangle is <math>2\sqrt 6</math>, so the area is <math>6\sqrt 3</math> our answer is <math>\boxed{\textbf{(C) }108}</math>. | ||
+ | -Stormersyle | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2017|ab=B|num-b=23|num-a=25}} | {{AMC10 box|year=2017|ab=B|num-b=23|num-a=25}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 12:49, 28 January 2019
Problem 24
The vertices of an equilateral triangle lie on the hyperbola , and a vertex of this hyperbola is the centroid of the triangle. What is the square of the area of the triangle?
Solution
WLOG, let the centroid of be . The centroid of an equilateral triangle is the same as the circumcenter. It follows that the circumcircle must intersect the graph exactly three times. Therefore, , so , so since is isosceles and , then by Law of Cosines, . Alternatively, we can use the fact that the circumradius of an equilateral triangle is equal to . Therefore, the area of the triangle is , so the square of the area of the triangle is .
Solution 2
WLOG, let the centroid of be . Then, one of the vertices must be the other curve of the hyperbola. WLOG, let . Then, point must be the reflection of across the line , so let and , where . Because is the centroid, the average of the -coordinates of the vertices of the triangle is . So we know that . Multiplying by and solving gives us . So and . So , and finding the square of the area gives us .
Solution 3
WLOG, let the centroid of be and let point be . It is known that the centroid is equidistant from the three vertices of . Because we have the coordinates of both and , we know that the distance from to any vertice of is . Therefore, . It follows that from , where and , using the formula for the area of a triangle with sine . Because and are congruent to , they also have an area of . Therefore, . Squaring that gives us the answer of .
Solution 4 (5-second sol)
WLOG let the centroid of the triangle be . By symmetry, one of the vertices is . The distance between these two points is , so the height of the triangle is because the centroid divides each median into a 2:1 ratio. This means that the side length of the triangle is , so the area is our answer is . -Stormersyle
See Also
2017 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.