Difference between revisions of "2008 iTest Problems/Problem 90"
Rockmanex3 (talk | contribs) (Solution to Problem 90 (credit to official solution) -- Minimum of Three Variable Fraction) |
(→Solution) |
||
Line 3: | Line 3: | ||
For <math>a,b,c</math> positive reals, let <math>N=\dfrac{a^2+b^2}{c^2+ab}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{c^2+a^2}{b^2+ca}</math>. Find the minimum value of <math>\lfloor 2008N\rfloor</math>. | For <math>a,b,c</math> positive reals, let <math>N=\dfrac{a^2+b^2}{c^2+ab}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{c^2+a^2}{b^2+ca}</math>. Find the minimum value of <math>\lfloor 2008N\rfloor</math>. | ||
− | ==Solution== | + | ==Solution 1== |
By the [[Trivial Inequality]] (with equality happening if <math>a = b</math>), | By the [[Trivial Inequality]] (with equality happening if <math>a = b</math>), | ||
Line 27: | Line 27: | ||
<br> | <br> | ||
Therefore, the minimum value of <math>N</math> (which happens if <math>a = b = c</math>) is <math>2 \cdot \frac32 = 3</math>, so the minimum value of <math>\lfloor 2008N\rfloor</math> is <math>\boxed{6024}</math>. | Therefore, the minimum value of <math>N</math> (which happens if <math>a = b = c</math>) is <math>2 \cdot \frac32 = 3</math>, so the minimum value of <math>\lfloor 2008N\rfloor</math> is <math>\boxed{6024}</math>. | ||
+ | |||
+ | ==Solution 2 (Cauchy-Schwarz Spam)== | ||
+ | Note that By C-S, <cmath>N=\sum \frac{a^2}{c^2+ab} \geq \frac{(2a+2b+2c)^2}{2c^2+2b^2+2a^2+2ab+2bc+2ac}=\frac{4(a+b+c)^2}{(a+b+c)^2+a^2+b^2+c^2}.</cmath> Thus, reciprocating and C-S gives <cmath>\frac{1}{N} \leq \frac{(a+b+c)^2+a^2+b^2+c^2}{4(a+b+c)^2}=\frac{1}{4}+\sum_{\text{cyc}} \frac{a^2}{4(a+b+c)^2} \geq \frac{1}{4}+\frac{(a+b+c)^2}{3 \cdot 4(a+b+c)^2}=\frac{1}{4}+\frac{1}{12}=\frac{1}{3}.</cmath> Reciprocating once again gives <math>N \geq 3,</math> with <math>N=3</math> clearly obtained at <math>a=b=c,</math> therefore the minimum is <cmath>\lfloor 2008N\rfloor=\boxed{6024}.</cmath> | ||
==See Also== | ==See Also== |
Revision as of 09:30, 20 April 2022
Problem
For positive reals, let . Find the minimum value of .
Solution 1
By the Trivial Inequality (with equality happening if ), Add to both sides and use the reciprocal property to get Since , multiplying both sides by this value would not change the inequality sign, and doing so results in By using similar steps, we find that
Let , , and , making . Note that . By the Cauchy-Schwarz Inequality, , so . Equality happens if , which is possible if . If , then .
Therefore, the minimum value of (which happens if ) is , so the minimum value of is .
Solution 2 (Cauchy-Schwarz Spam)
Note that By C-S, Thus, reciprocating and C-S gives Reciprocating once again gives with clearly obtained at therefore the minimum is
See Also
2008 iTest (Problems) | ||
Preceded by: Problem 89 |
Followed by: Problem 91 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 • 51 • 52 • 53 • 54 • 55 • 56 • 57 • 58 • 59 • 60 • 61 • 62 • 63 • 64 • 65 • 66 • 67 • 68 • 69 • 70 • 71 • 72 • 73 • 74 • 75 • 76 • 77 • 78 • 79 • 80 • 81 • 82 • 83 • 84 • 85 • 86 • 87 • 88 • 89 • 90 • 91 • 92 • 93 • 94 • 95 • 96 • 97 • 98 • 99 • 100 |