Difference between revisions of "1996 AHSME Problems/Problem 27"

(Solution 2)
(Solution 2)
Line 37: Line 37:
 
Because both spheres have their centers on the x-axis, we can simplify the graph a bit by looking at a two-dimensional plane (the previous z-axis is the new x-axis and the y-axis remains the same).
 
Because both spheres have their centers on the x-axis, we can simplify the graph a bit by looking at a two-dimensional plane (the previous z-axis is the new x-axis and the y-axis remains the same).
  
The spheres now become circles with centers at (1,0) and (21/2,0).  They have radii 9/2 and 4, respectively.
+
The spheres now become circles with centers at <math>(1,0)</math> and (21/2,0)<math>.  They have radii </math>9/2<math> and </math>4<math>, respectively.
Let circle A be the circle centered on (1,0) and circle B be the one centered on (21/2,0).
+
Let circle </math>A<math> be the circle centered on </math>(1,0)<math> and circle </math>B<math> be the one centered on </math>(21/2,0)<math>.
  
The point on circle A closest to the center of circle B is (11/2,0).  The point on circle B closest to the center of circle A is (13/2,0).
+
The point on circle </math>A<math> closest to the center of circle </math>B<math> is </math>(11/2,0)<math>.  The point on circle B closest to the center of circle </math>A<math> is </math>(13/2,0)$.
  
 
==See also==
 
==See also==
 
{{AHSME box|year=1996|num-b=26|num-a=28}}
 
{{AHSME box|year=1996|num-b=26|num-a=28}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 21:05, 30 December 2018

Problem

Consider two solid spherical balls, one centered at $\left(0, 0,\frac{21}{2}\right)$ with radius $6$, and the other centered at $(0, 0, 1)$ with radius $\frac{9}{2}$. How many points with only integer coordinates (lattice points) are there in the intersection of the balls?

$\text{(A)}\ 7\qquad\text{(B)}\ 9\qquad\text{(C)}\ 11\qquad\text{(D)}\ 13\qquad\text{(E)}\ 15$

Solution 1

The two equations of the balls are

\[x^2 + y^2 + \left(z - \frac{21}{2}\right)^2 \le 36\]

\[x^2 + y^2 + (z - 1)^2 \le \frac{81}{4}\]

Note that along the $z$ axis, the first ball goes from $10.5 \pm 6$, and the second ball goes from $1 \pm 4.5$. The only integer value that $z$ can be is $z=5$.

Plugging that in to both equations, we get:

\[x^2 + y^2 \le \frac{23}{4}\]

\[x^2 + y^2 \le \frac{17}{4}\]

The second inequality implies the first inequality, so the only condition that matters is the second inequality.

From here, we do casework, noting that $|x|, |y| \le 3$:

For $x=\pm 2$, we must have $y=0$. This gives $2$ points.

For $x = \pm 1$, we can have $y\in \{-1, 0, 1\}$. This gives $2\cdot 3 = 6$ points.

For $x = 0$, we can have $y \in \{-2, -1, 0, 1, 2\}$. This gives $5$ points.

Thus, there are $\boxed{13}$ possible points, giving answer $\boxed{D}$.

Solution 2

Because both spheres have their centers on the x-axis, we can simplify the graph a bit by looking at a two-dimensional plane (the previous z-axis is the new x-axis and the y-axis remains the same).

The spheres now become circles with centers at $(1,0)$ and (21/2,0)$.  They have radii$9/2$and$4$, respectively. Let circle$A$be the circle centered on$(1,0)$and circle$B$be the one centered on$(21/2,0)$.

The point on circle$ (Error compiling LaTeX. Unknown error_msg)A$closest to the center of circle$B$is$(11/2,0)$.  The point on circle B closest to the center of circle$A$is$(13/2,0)$.

See also

1996 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 26
Followed by
Problem 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png