Difference between revisions of "2011 AMC 10B Problems/Problem 24"
(→Solution 3) |
(→See Also) |
||
Line 15: | Line 15: | ||
==Solution 3== | ==Solution 3== | ||
We want to find the smallest <math>m</math> such that there will be an integral solution to <math>y=mx+2</math> with <math>0<x\le100</math>. We first test A, but since the denominator has a <math>101</math>, <math>x</math> must be a nonzero multiple of <math>101</math>, but it then will be greater than <math>100</math>. We then test B. <math>y=\frac{50}{99}x+2</math> yields the solution <math>(99,52)</math> which satisfies <math>0<x\le100</math>. Checking the answer choices, we know that the smallest possible <math>a</math> must be <math>\frac{50}{99}\implies\boxed{\textbf{(B)}}</math> | We want to find the smallest <math>m</math> such that there will be an integral solution to <math>y=mx+2</math> with <math>0<x\le100</math>. We first test A, but since the denominator has a <math>101</math>, <math>x</math> must be a nonzero multiple of <math>101</math>, but it then will be greater than <math>100</math>. We then test B. <math>y=\frac{50}{99}x+2</math> yields the solution <math>(99,52)</math> which satisfies <math>0<x\le100</math>. Checking the answer choices, we know that the smallest possible <math>a</math> must be <math>\frac{50}{99}\implies\boxed{\textbf{(B)}}</math> | ||
− | |||
− | |||
− | |||
− |
Revision as of 21:16, 26 December 2018
Contents
Problem
A lattice point in an -coordinate system is any point
where both
and
are integers. The graph of
passes through no lattice point with
for all
such that
. What is the maximum possible value of
?
Solution 1
For to not pass through any lattice points with
is the same as saying that
for
, or in other words,
is not expressible as a ratio of positive integers
with
. Hence the maximum possible value of
is the first real number after
that is so expressible.
For each , the smallest multiple of
which exceeds
is
respectively, and the smallest of these is
.
Solution 2
We see that for the graph of to not pass through any lattice points, the denominator of
must be greater than
, or else it would be canceled by some
which would make
an integer. By using common denominators, we find that the order of the fractions from smallest to largest is
. We can see that when
,
would be an integer, so therefore any fraction greater than
would not work, as substituting our fraction
for
would produce an integer for
. So now we are left with only
and
. But since
and
, we can be absolutely certain that there isn't a number between
and
that can reduce to a fraction whose denominator is less than or equal to
. Since we are looking for the maximum value of
, we take the larger of
and
, which is
.
Solution 3
We want to find the smallest such that there will be an integral solution to
with
. We first test A, but since the denominator has a
,
must be a nonzero multiple of
, but it then will be greater than
. We then test B.
yields the solution
which satisfies
. Checking the answer choices, we know that the smallest possible
must be