Difference between revisions of "2018 AMC 8 Problems/Problem 11"

(Solution)
m (Solution 2)
Line 42: Line 42:
 
==Solution 2==
 
==Solution 2==
 
We can ignore about the 4 other classmates because they aren't relevant. We can treat Abby and Bridget as a pair, so there are <math>{6 \choose 2}=15</math> total ways to seat them. If they sit in the same row, there are <math>2*2=4</math> ways to seat them. If they sit in the same column, there are <math>3</math> ways to seat them. Thus our answer is <math>\frac{4+3}{15} = \boxed{\textbf{(C) }\frac 7{15}}</math>
 
We can ignore about the 4 other classmates because they aren't relevant. We can treat Abby and Bridget as a pair, so there are <math>{6 \choose 2}=15</math> total ways to seat them. If they sit in the same row, there are <math>2*2=4</math> ways to seat them. If they sit in the same column, there are <math>3</math> ways to seat them. Thus our answer is <math>\frac{4+3}{15} = \boxed{\textbf{(C) }\frac 7{15}}</math>
 +
==Solution 3==
 +
Total number of ways n(S) = C(6,2) = 15, if we treat Abby and Bridget as a pair and forget the others.
 +
Total number of ways they are adjacent = 4 (for the rows) + 3 (for the columns)
 +
Therefore, P(Abby and Bridget sitting adjacent) is 7/15 (C)
  
 
==See also==
 
==See also==

Revision as of 13:27, 6 June 2019

Problem 11

Abby, Bridget, and four of their classmates will be seated in two rows of three for a group picture, as shown. \begin{eqnarray*} \text{X}&\quad\text{X}\quad&\text{X} \\ \text{X}&\quad\text{X}\quad&\text{X}  \end{eqnarray*} If the seating positions are assigned randomly, what is the probability that Abby and Bridget are adjacent to each other in the same row or the same column?

$\textbf{(A) } \frac{1}{3} \qquad \textbf{(B) } \frac{2}{5} \qquad \textbf{(C) } \frac{7}{15} \qquad \textbf{(D) } \frac{1}{2} \qquad \textbf{(E) } \frac{2}{3}$

Solution

There are a total of $6!$ ways to arrange the kids.

Abby and Bridget can sit in 3 ways if they are adjacent in the same column: \begin{eqnarray*} \text{A}&\quad\text{X}\quad&\text{X} \\ \text{B}&\quad\text{X}\quad&\text{X}  \end{eqnarray*}


\begin{eqnarray*} \text{X}&\quad\text{A}\quad&\text{X} \\ \text{X}&\quad\text{B}\quad&\text{X}  \end{eqnarray*}


\begin{eqnarray*} \text{X}&\quad\text{X}\quad&\text{A} \\ \text{X}&\quad\text{X}\quad&\text{B}  \end{eqnarray*}


For each of these seat positions, Abby and Bridget can switch seats, and the other 4 people can be arranged in $4!$ ways which results in a total of $3 \times 2 \times 4!$ ways to arrange them.


By the same logic, there are 4 ways for Abby and Bridget to placed if they are adjacent in the same row, they can swap seats, and the other $4$ people can be arranged in $4!$ ways, for a total of $4 \times 2 \times 4!$ ways to arrange them.


We sum the 2 possibilities up to get $\frac{(3*2)*4!+(4*2)*4!}{6!} = \frac{14*4!}{6!}=\boxed{\frac{7}{15}}$ or $\textbf{(C)}$.

Solution 2

We can ignore about the 4 other classmates because they aren't relevant. We can treat Abby and Bridget as a pair, so there are ${6 \choose 2}=15$ total ways to seat them. If they sit in the same row, there are $2*2=4$ ways to seat them. If they sit in the same column, there are $3$ ways to seat them. Thus our answer is $\frac{4+3}{15} = \boxed{\textbf{(C) }\frac 7{15}}$

Solution 3

Total number of ways n(S) = C(6,2) = 15, if we treat Abby and Bridget as a pair and forget the others. Total number of ways they are adjacent = 4 (for the rows) + 3 (for the columns) Therefore, P(Abby and Bridget sitting adjacent) is 7/15 (C)

See also

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png