Difference between revisions of "2018 AMC 8 Problems/Problem 23"

(Created page with "==Problem 23== From a regular octagon, a triangle is formed by connecting three randomly chosen vertices of the octagon. What is the probability that at least one of the sides...")
 
(Problem 23)
Line 13: Line 13:
  
 
<math>\textbf{(A) } \frac{2}{7} \qquad \textbf{(B) } \frac{5}{42} \qquad \textbf{(C) } \frac{11}{14} \qquad \textbf{(D) } \frac{5}{7} \qquad \textbf{(E) } \frac{6}{7}</math>
 
<math>\textbf{(A) } \frac{2}{7} \qquad \textbf{(B) } \frac{5}{42} \qquad \textbf{(C) } \frac{11}{14} \qquad \textbf{(D) } \frac{5}{7} \qquad \textbf{(E) } \frac{6}{7}</math>
 +
{{AMC8 box|year=2018|num-b=22|num-a=24}}
 +
 +
{{MAA Notice}}

Revision as of 11:06, 21 November 2018

Problem 23

From a regular octagon, a triangle is formed by connecting three randomly chosen vertices of the octagon. What is the probability that at least one of the sides of the triangle is also a side of the octagon?

[asy] size(3cm); pair A[]; for (int i=0; i<9; ++i) {   A[i] = rotate(22.5+45*i)*(1,0); } filldraw(A[0]--A[1]--A[2]--A[3]--A[4]--A[5]--A[6]--A[7]--cycle,gray,black); for (int i=0; i<8; ++i) { dot(A[i]); } [/asy]

$\textbf{(A) } \frac{2}{7} \qquad \textbf{(B) } \frac{5}{42} \qquad \textbf{(C) } \frac{11}{14} \qquad \textbf{(D) } \frac{5}{7} \qquad \textbf{(E) } \frac{6}{7}$

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png