Difference between revisions of "1958 AHSME Problems/Problem 46"
The referee (talk | contribs) (→Solution) |
The referee (talk | contribs) (→Solution) |
||
Line 15: | Line 15: | ||
From there, we get that <math>x</math> is either <math>2</math> or <math>0</math>. Substituting both of them in, you get that if <math>x=2</math>, then the value is <math>1</math>. If you plug in the value of <math>x=0</math>, you get the value of <math>-1</math>. So the answer is <math>\textbf{(D)}</math> | From there, we get that <math>x</math> is either <math>2</math> or <math>0</math>. Substituting both of them in, you get that if <math>x=2</math>, then the value is <math>1</math>. If you plug in the value of <math>x=0</math>, you get the value of <math>-1</math>. So the answer is <math>\textbf{(D)}</math> | ||
− | Solution by: the_referee | + | Solution by: [b]the_referee[b] |
== See Also == | == See Also == |
Revision as of 11:23, 23 October 2018
Problem
For values of less than but greater than , the expression has:
Solution
From , we can further factor and then and finally . Using , we can see that . From there, we can get that .
From there, we get that is either or . Substituting both of them in, you get that if , then the value is . If you plug in the value of , you get the value of . So the answer is
Solution by: [b]the_referee[b]
See Also
1958 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 45 |
Followed by Problem 47 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.