Difference between revisions of "Mock AIME 2 2006-2007 Problems/Problem 5"
m |
|||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
− | {{ | + | |
+ | Multiplying both sides of the equation by <math>z</math>, we get <P><center><math>iz^3 = z + 2 + \frac{3}{z} + \frac{4}{z^2} + \cdots,</math></center></P><div align=left>and subtracting the original equation from this one we get</div><P><center><math>iz^2(z-1)=z+1+\frac{1}{z}+\frac{1}{z^2}+\frac{1}{z^3}+\cdots.</math></center></P><div align=left>Using the formula for an infinite geometric series, we find</div><P><center><math>iz^2(z-1)=\frac{z}{1-\frac{1}{z}}=\frac{z^2}{z-1}.</math></center></P><div align=left>Rearranging, we get</div><P><center><math>iz^2(z-1)^2=z^2\iff (z-1)^2=\frac{1}{i}=-i\Rightarrow z=1\pm\sqrt{-i}.</math></center></P><div align=left>Thus the answer is <math>n=1, \lfloor 100n \rfloor = 100</math>.</div> | ||
---- | ---- |
Revision as of 11:43, 16 September 2006
Problem
Given that and find
Solution
Multiplying both sides of the equation by , we get
and subtracting the original equation from this one we get
Using the formula for an infinite geometric series, we find
Rearranging, we get
Thus the answer is .