Difference between revisions of "1955 AHSME Problems/Problem 4"

(Solution)
(Solution)
Line 11: Line 11:
 
Solving this, we get, <math>{2x-2}={x-2}</math>.
 
Solving this, we get, <math>{2x-2}={x-2}</math>.
  
Thus, {only}x=0<math> can satisfy the equation, {(E)}</math>
+
Thus, {only x=0}<math> can satisfy the equation, {(E)}</math>

Revision as of 22:56, 6 July 2018

Problem

The equality $\frac{1}{x-1}=\frac{2}{x-2}$ is satisfied by:

$\textbf{(A)}\ \text{no real values of }x\qquad\textbf{(B)}\ \text{either }x=1\text{ or }x=2\qquad\textbf{(C)}\ \text{only }x=1\\ \textbf{(D)}\ \text{only }x=2\qquad\textbf{(E)}\ \text{only }x=0$

Solution

From the equality, $\frac{1}{x-1}=\frac{2}{x-2}$, we get ${(x-1)}*2={(x-2)}*1$.

Solving this, we get, ${2x-2}={x-2}$.

Thus, {only x=0}$can satisfy the equation, {(E)}$