Difference between revisions of "2018 AIME I Problems/Problem 5"

(Note)
(Note)
Line 13: Line 13:
 
The cases <math>x=y</math> and <math>x=-2y</math> can be found by SFFT from <math>x^2+xy-2y^2=0 \implies (x+2y)(x-y)=0</math>.
 
The cases <math>x=y</math> and <math>x=-2y</math> can be found by SFFT from <math>x^2+xy-2y^2=0 \implies (x+2y)(x-y)=0</math>.
  
-RootThreeOverTwo
+
'''-RootThreeOverTwo'''
  
 
==See Also==
 
==See Also==
 
{{AIME box|year=2018|n=I|num-b=4|num-a=6}}
 
{{AIME box|year=2018|n=I|num-b=4|num-a=6}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 16:23, 13 May 2018

For each ordered pair of real numbers $(x,y)$ satisfying \[\log_2(2x+y) = \log_4(x^2+xy+7y^2)\]there is a real number $K$ such that \[\log_3(3x+y) = \log_9(3x^2+4xy+Ky^2).\]Find the product of all possible values of $K$.

Solution

Note that $(2x+y)^2 = x^2+xy+7y^2$. That gives $x^2+xy-2y^2=0$ upon simplification and division by $3$. Then, $x=y$ or $x=-2y$. From the second equation, $9x^2+6xy+y^2=3x^2+4xy+Ky^2$. If we take $x=y$, we see that $K=9$. If we take $x=-2y$, we see that $K=21$. The product is $\boxed{189}$.

-expiLnCalc

Note

The cases $x=y$ and $x=-2y$ can be found by SFFT from $x^2+xy-2y^2=0 \implies (x+2y)(x-y)=0$.

-RootThreeOverTwo

See Also

2018 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png