Difference between revisions of "2002 AMC 12A Problems/Problem 7"
(→Solutions) |
(→Solution 2) |
||
Line 22: | Line 22: | ||
We know that the length of a <math>45^{\circ}</math> arc on circle <math>A</math> is equal to the length of a <math>30^{\circ}</math> arc of circle <math>B</math>, so <math>\frac{c_1}{8}=\frac{c_2}{12}</math>. Manipulating the equation, we get <math>\frac{c_1}{c_2}=\frac{8}{12}=\frac{2}{3}</math>. Because the ratio of the areas is equal to the ratio of the circumferences squared, our answer is <math>\frac{2^2}{3^2}=\boxed{\text{(A)}\ 4/9}</math> | We know that the length of a <math>45^{\circ}</math> arc on circle <math>A</math> is equal to the length of a <math>30^{\circ}</math> arc of circle <math>B</math>, so <math>\frac{c_1}{8}=\frac{c_2}{12}</math>. Manipulating the equation, we get <math>\frac{c_1}{c_2}=\frac{8}{12}=\frac{2}{3}</math>. Because the ratio of the areas is equal to the ratio of the circumferences squared, our answer is <math>\frac{2^2}{3^2}=\boxed{\text{(A)}\ 4/9}</math> | ||
− | ===Solution | + | ===Solution 3=== |
The arc of circle <math>A</math> is <math>\frac{45}{30}=\frac{3}{2}</math> that of circle <math>B</math>. | The arc of circle <math>A</math> is <math>\frac{45}{30}=\frac{3}{2}</math> that of circle <math>B</math>. | ||
Revision as of 20:45, 12 May 2018
- The following problem is from both the 2002 AMC 12A #7 and 2002 AMC 10A #7, so both problems redirect to this page.
Problem
A arc of circle A is equal in length to a arc of circle B. What is the ratio of circle A's area and circle B's area?
Solutions
Solution 1
Let and be the radii of circles and, respectively.
It is well known that in a circle with radius, a subtended arc opposite an angle of degrees has length .
Using that here, the arc of circle A has length . The arc of circle B has length . We know that they are equal, so , so we multiply through and simplify to get . As all circles are similar to one another, the ratio of the areas is just the square of the ratios of the radii, so our answer is .
Solution 2
Let and be the circumference of circles and , respectively.
The length of a arc of circle is , and the length of a arc of circle is . We know that the length of a arc on circle is equal to the length of a arc of circle , so . Manipulating the equation, we get . Because the ratio of the areas is equal to the ratio of the circumferences squared, our answer is
Solution 3
The arc of circle is that of circle .
The circumference of circle is that of circle ( is the larger circle).
The radius of circle is that of circle .
The area of circle is that of circle .
See Also
2002 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 6 |
Followed by Problem 8 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2002 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.