Difference between revisions of "1953 AHSME Problems/Problem 24"

(Created page with "If <math>a,b,c</math> are positive integers less than <math>10</math>, then <math>(10a + b)(10a + c) = 100a(a + 1) + bc</math> if: <math>\textbf{(A)}</math> <math>b+c=10</mat...")
 
m
 
Line 1: Line 1:
 +
==Problem==
 
If <math>a,b,c</math> are positive integers less than <math>10</math>, then <math>(10a + b)(10a + c) = 100a(a + 1) + bc</math> if:
 
If <math>a,b,c</math> are positive integers less than <math>10</math>, then <math>(10a + b)(10a + c) = 100a(a + 1) + bc</math> if:
  
<math>\textbf{(A)}</math> <math>b+c=10</math>
+
<math>\textbf{(A) }b+c=10</math>
<math>\textbf{(B)}</math> <math>b=c</math>
+
<math>\qquad\textbf{(B) }b=c</math>
<math>\textbf{(C)}</math> <math>a+b=10</math>
+
<math>\qquad\textbf{(C) }a+b=10</math>
<math>\textbf {(D)}</math> <math>a=b</math>
+
<math>\qquad\textbf {(D) }a=b</math>
<math>\textbf{(E)}</math> <math>a+b+c=10</math>
+
<math>\qquad\textbf{(E) }a+b+c=10</math>
  
 +
==Solution==
 +
Multiply out the LHS to get <math>100a^2+10ac+10ab+bc=100a(a+1)+bc</math>. Subtract <math>bc</math> and factor to get <math>10a(10a+b+c)=10a(10a+10)</math>. Divide both sides by <math>10a</math> and then subtract <math>10a</math> to get <math>b+c=10</math>, giving an answer of <math>\boxed{A}</math>.
  
Multiply out the LHS to get <math>100a^2+10ac+10ab+bc=100a(a+1)+bc</math>. Subtract <math>bc</math> and factor to get <math>10a(10a+b+c)=10a(10a+10)</math>. Divide both sides by <math>10a</math> and then subtract <math>10a</math> to get <math>b+c=10</math>, giving an answer of <math>\boxed{A}</math>.
+
==See Also==
 +
{{AHSME 50p box|year=1953|num-b=23|num-a=25}}
 +
 
 +
{{MAA Notice}}

Latest revision as of 23:53, 25 January 2020

Problem

If $a,b,c$ are positive integers less than $10$, then $(10a + b)(10a + c) = 100a(a + 1) + bc$ if:

$\textbf{(A) }b+c=10$ $\qquad\textbf{(B) }b=c$ $\qquad\textbf{(C) }a+b=10$ $\qquad\textbf {(D) }a=b$ $\qquad\textbf{(E) }a+b+c=10$

Solution

Multiply out the LHS to get $100a^2+10ac+10ab+bc=100a(a+1)+bc$. Subtract $bc$ and factor to get $10a(10a+b+c)=10a(10a+10)$. Divide both sides by $10a$ and then subtract $10a$ to get $b+c=10$, giving an answer of $\boxed{A}$.

See Also

1953 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png