Difference between revisions of "2018 USAMO Problems/Problem 2"
(Created page with "==Problem 2== Find all functions <math>f:(0,\infty) \rightarrow (0,\infty)</math> such that <cmath>f\left(x+\frac{1}{y}\right)+f\left(y+\frac{1}{z}\right) + f\left(z+\frac{1}...") |
(→Solution) |
||
Line 6: | Line 6: | ||
==Solution== | ==Solution== | ||
+ | |||
+ | The only such function is <math>f(x)=\frac13</math>. | ||
+ | |||
+ | Letting <math>x=y=z=1</math> gives <math>3f(2)=1</math>, hence <math>f(2)=\frac13</math>. Now observe that even if we fix <math>x+\frac1y=y+\frac1z=2</math>, <math>z+\frac1x</math> is not fixed. Specifically, | ||
+ | <cmath>y=\frac1{2-x}</cmath> | ||
+ | <cmath>z=\frac1{2-y}=\frac{2-x}{3-2x}</cmath> | ||
+ | <cmath>z+\frac1x=\frac12+\frac1x+\frac1{2(3-2x)}</cmath> | ||
+ | This is continuous on the interval <math>x\in\left(0,\frac32\right)</math> and has an asymptote at <math>x=\frac32</math>. Since it takes the value 2 when <math>x=1</math>, it can take on all values greater than or equal to 2. So for any <math>a\ge2</math>, we can find <math>x</math> such that <math>2f(2)+f(x)=1</math>. Therefore, <math>f(x)=\frac13</math> for all <math>x\ge2</math>. | ||
+ | |||
+ | Now, for any <math>0<k<2</math>, if we let <math>x=\frac k2</math>, <math>y=\frac1x</math>, and <math>z=1</math>, then <math>f(k)+2f\left(1+\frac2k\right)=1</math>. Since <math>1+\frac2k>2</math>, <math>f\left(1+\frac2k\right)=\frac13</math>, hence <math>f(k)=\frac13</math>. Therefore, <math>f(x)=\frac13</math> for all <math>x\ge0</math>. | ||
+ | |||
+ | -- wzs26843645602 |
Revision as of 18:45, 19 March 2022
Problem 2
Find all functions such that
for all with
Solution
The only such function is .
Letting gives , hence . Now observe that even if we fix , is not fixed. Specifically, This is continuous on the interval and has an asymptote at . Since it takes the value 2 when , it can take on all values greater than or equal to 2. So for any , we can find such that . Therefore, for all .
Now, for any , if we let , , and , then . Since , , hence . Therefore, for all .
-- wzs26843645602