Difference between revisions of "2011 AMC 10B Problems/Problem 21"
(→Solution 4) |
m (→Solution 2) |
||
Line 48: | Line 48: | ||
First, like Solution 1, we know that <math>w-z=9 \ \text{(1)}</math>, because no sum could be smaller. Next, we find the sum of all the differences; since <math>w</math> is in the positive part of a difference 3 times, and has no differences where it contributes as the negative part, the sum of the differences includes <math>3w</math>. Continuing in this way, we find that <cmath>3w+x-y-3z=28 \ \text{(2)}</cmath>. Now, we can subtract <math>3w-3z=27</math> from (2) to get <math>x-y=1 \ \text{(3)}</math>. Also, adding (2) with <math>w+x+y+z=44</math> gives <math>4w+2x-2z=72</math>, or <math>2w+x-z=36</math>. Subtracting (1) from this gives <math>w+x=27</math>. Since we know <math>w-z</math> and <math>x-y</math>, we find that <cmath>(w-z)+(x-y)=(w-y)+(x-z)=9+1=10</cmath>. This means that <math>w-y</math> and <math>x-z</math> must be 4 and 6, in some order. If <math>w-y=6</math>, then subtracting this from (3) gives <math>(w-y)-(x-y)=6-1=5</math>, so <math>w-x=5</math>. This means that <math>(w-x)+(w+x)=2w=27+5=32</math>, so <math>w=16</math>. Similarly, <math>w</math> can also equal <math>15</math>. | First, like Solution 1, we know that <math>w-z=9 \ \text{(1)}</math>, because no sum could be smaller. Next, we find the sum of all the differences; since <math>w</math> is in the positive part of a difference 3 times, and has no differences where it contributes as the negative part, the sum of the differences includes <math>3w</math>. Continuing in this way, we find that <cmath>3w+x-y-3z=28 \ \text{(2)}</cmath>. Now, we can subtract <math>3w-3z=27</math> from (2) to get <math>x-y=1 \ \text{(3)}</math>. Also, adding (2) with <math>w+x+y+z=44</math> gives <math>4w+2x-2z=72</math>, or <math>2w+x-z=36</math>. Subtracting (1) from this gives <math>w+x=27</math>. Since we know <math>w-z</math> and <math>x-y</math>, we find that <cmath>(w-z)+(x-y)=(w-y)+(x-z)=9+1=10</cmath>. This means that <math>w-y</math> and <math>x-z</math> must be 4 and 6, in some order. If <math>w-y=6</math>, then subtracting this from (3) gives <math>(w-y)-(x-y)=6-1=5</math>, so <math>w-x=5</math>. This means that <math>(w-x)+(w+x)=2w=27+5=32</math>, so <math>w=16</math>. Similarly, <math>w</math> can also equal <math>15</math>. | ||
− | Now if you are in a rush, you would have just answered <math>16+15=\boxed{\textbf{(B) }31}</math>. But we do have to check if these work. In fact, they do, giving solutions <math>\boxed{16, 11, 10, 7}</math> and <math>\boxed{15, 12, 11, 6}</math>. | + | Now if you are in a rush, you would have just answered <math>16+15=\boxed{\textbf{(B) }31}</math>. But we do have to check if these work. In fact, they do, giving solutions <math>\boxed{(w,x,y,z)=(16, 11, 10, 7)}</math> and <math>\boxed{(w,x,y,z)=15, 12, 11, 6}</math>. |
− | |||
== Solution 3 == | == Solution 3 == |
Revision as of 16:12, 23 September 2018
Problem
Brian writes down four integers whose sum is . The pairwise positive differences of these numbers are and . What is the sum of the possible values for ?
Solution 1
The largest difference, must be between and
The smallest difference, must be directly between two integers. This also means the differences directly between the other two should add up to The only remaining differences that would make this possible are and However, those two differences can't be right next to each other because they would make a difference of This means must be the difference between and We can express the possible configurations as the lines.
If we look at the first number line, you can express as as and as Since the sum of all these integers equal , You can do something similar to this with the second number line to find the other possible value of The sum of the possible values of is
Solution 2
First, like Solution 1, we know that , because no sum could be smaller. Next, we find the sum of all the differences; since is in the positive part of a difference 3 times, and has no differences where it contributes as the negative part, the sum of the differences includes . Continuing in this way, we find that . Now, we can subtract from (2) to get . Also, adding (2) with gives , or . Subtracting (1) from this gives . Since we know and , we find that . This means that and must be 4 and 6, in some order. If , then subtracting this from (3) gives , so . This means that , so . Similarly, can also equal .
Now if you are in a rush, you would have just answered . But we do have to check if these work. In fact, they do, giving solutions and .
Solution 3
Let , , . As above, we know that . Thus, . So, we have . This means is a multiple of . Testing values of and , we find and all satisfy this relation. The corresponding sets are and . The first set does not satisfy the given conditions, but the other two do. Thus, and are both possible solutions so the answer is .
~~ solution by ccx09 Roy Short ~~latexed by jk23541
Solution 4
From the problem, we know that . Since it is said that the pairwise positive differences between numbers are 1, 3, 4, 5, 6, 9, and we can figure that the pairwise positive differences are , , , , , , the sum of is equal to the sum of 1, 3, 4, 5, 6, 9, so . Simplifying, we get . Adding and , we get , and simplifying we get . Since is one of our positive differences, we can start guessing values for , and if the equation simplifies to one of our numerical positive differences, that value of should work. We can start at and keep going down, because our sum has to be positive. For , , which is not one of our sums. For , ,which is not one of our sums. For , , which is one of our sums, so 16 works. For , , which is one of our sums, so 15 works. For , , which is not one of our sums. If we keep going, will soon exceed 10 and exceed all our sums, so any value below will not work. Therefore, our only solutions for are 15 and 16, which means our sum is . You can check that 15 and 16 work by forming a string of 4 numbers as shown above.
See Also
2011 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.