Difference between revisions of "2012 AMC 8 Problems/Problem 9"
(→Solution) |
Larryflora (talk | contribs) |
||
Line 26: | Line 26: | ||
Now we have to do some swapping--for every two-legged bird we swap for a four-legged mammal, we gain 2 legs. For example, if we swapped one bird for one mammal, giving 199 birds and 1 mammal, there would be <math>400 + 1(2) = 402</math> legs. If we swapped two birds for two mammals, there would be <math>400 + 2(2) = 404</math> legs. If we swapped 50 birds for 50 mammals, there would be <math>400 + 50(2) = 500</math> legs. | Now we have to do some swapping--for every two-legged bird we swap for a four-legged mammal, we gain 2 legs. For example, if we swapped one bird for one mammal, giving 199 birds and 1 mammal, there would be <math>400 + 1(2) = 402</math> legs. If we swapped two birds for two mammals, there would be <math>400 + 2(2) = 404</math> legs. If we swapped 50 birds for 50 mammals, there would be <math>400 + 50(2) = 500</math> legs. | ||
− | + | ==Solution 3: Cheating the System== | |
− | + | Let's assume each bird has four-legged as each mammal. So the total legs of these birds and mammals would be <math>4*200=800</math>. It exactly gives us the assumed legs of birds by doing this subtraction: <math>800 - 522 = 278</math>. Each bird has 2 legs, the number of birds would be <math> 278/2 = \boxed{\textbf{(C)}\ 139} </math> two-legged birds$. ---LarryFlora | |
+ | |||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2012|num-b=8|num-a=10}} | {{AMC8 box|year=2012|num-b=8|num-a=10}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 12:12, 16 August 2021
Contents
Problem
The Fort Worth Zoo has a number of two-legged birds and a number of four-legged mammals. On one visit to the zoo, Margie counted 200 heads and 522 legs. How many of the animals that Margie counted were two-legged birds?
Solution 1: Algebra
Let the number of two-legged birds be and the number of four-legged mammals be . We can now use systems of equations to solve this problem.
Write two equations:
Now multiply the latter equation by .
By subtracting the second equation from the first equation, we find that . Since there were heads, meaning that there were animals, there were two-legged birds.
Solution 2: Cheating the System
First, we "assume" there are 200 two-legged birds only, and 0 four-legged mammals. Of course, this poses a problem, as then there would only be legs.
Now we have to do some swapping--for every two-legged bird we swap for a four-legged mammal, we gain 2 legs. For example, if we swapped one bird for one mammal, giving 199 birds and 1 mammal, there would be legs. If we swapped two birds for two mammals, there would be legs. If we swapped 50 birds for 50 mammals, there would be legs.
Solution 3: Cheating the System
Let's assume each bird has four-legged as each mammal. So the total legs of these birds and mammals would be . It exactly gives us the assumed legs of birds by doing this subtraction: . Each bird has 2 legs, the number of birds would be two-legged birds$. ---LarryFlora
See Also
2012 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.