Difference between revisions of "1950 AHSME Problems/Problem 34"

(Solution)
(Solution 2)
Line 13: Line 13:
  
 
==Solution 2==
 
==Solution 2==
The radii of the circle are <math>\frac{20}{2\pi}</math> and <math>\frac{25}{2\pi}</math>, respectively. The positive difference is therefore <math>\boxed{\textbf{(D)}\ \dfrac{5}{2\pi}\text{ in}}</math>.
+
The radii of the circles are <math>\frac{20}{2\pi}</math> and <math>\frac{25}{2\pi}</math>, respectively. The positive difference is therefore <math>\boxed{\textbf{(D)}\ \dfrac{5}{2\pi}\text{ in}}</math>.
  
 
==See Also==
 
==See Also==

Revision as of 19:59, 20 March 2018

Problem

When the circumference of a toy balloon is increased from $20$ inches to $25$ inches, the radius is increased by:

$\textbf{(A)}\ 5\text{ in} \qquad \textbf{(B)}\ 2\dfrac{1}{2}\text{ in} \qquad \textbf{(C)}\ \dfrac{5}{\pi}\text{ in} \qquad \textbf{(D)}\ \dfrac{5}{2\pi}\text{ in} \qquad \textbf{(E)}\ \dfrac{\pi}{5}\text{ in}$

Solution

When the circumference of a circle is increased by a percentage, the radius is also increased by the same percentage (or else the ratio of the circumference to the diameter wouldn't be $\pi$ anymore) We see that the circumference was increased by $25\%$. This means the radius was also increased by $25\%$. The radius of the original balloon is $\frac{20}{2\pi}=\frac{10}{\pi}$. With the $25\%$ increase, it becomes $\frac{12.5}{\pi}$. The increase is $\frac{12.5-10}{\pi}=\frac{2.5}{\pi}=\boxed{\textbf{(D)}\ \dfrac{5}{2\pi}\text{ in}}$

Solution 2

The radii of the circles are $\frac{20}{2\pi}$ and $\frac{25}{2\pi}$, respectively. The positive difference is therefore $\boxed{\textbf{(D)}\ \dfrac{5}{2\pi}\text{ in}}$.

See Also

1950 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 33
Followed by
Problem 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png