Difference between revisions of "1956 AHSME Problems/Problem 49"
(Created page with "Solution 1 First, from triangle <math>ABO</math>, <math>\angle AOB = 180^\circ - \angle BAO - \angle ABO</math>. Note that <math>AO</math> bisects <math>\angle BAT</math> (to...") |
m |
||
Line 3: | Line 3: | ||
First, from triangle <math>ABO</math>, <math>\angle AOB = 180^\circ - \angle BAO - \angle ABO</math>. Note that <math>AO</math> bisects <math>\angle BAT</math> (to see this, draw radii from <math>O</math> to <math>AB</math> and <math>AT,</math> creating two congruent right triangles), so <math>\angle BAO = \angle BAT/2</math>. Similarly, <math>\angle ABO = \angle ABR/2</math>. | First, from triangle <math>ABO</math>, <math>\angle AOB = 180^\circ - \angle BAO - \angle ABO</math>. Note that <math>AO</math> bisects <math>\angle BAT</math> (to see this, draw radii from <math>O</math> to <math>AB</math> and <math>AT,</math> creating two congruent right triangles), so <math>\angle BAO = \angle BAT/2</math>. Similarly, <math>\angle ABO = \angle ABR/2</math>. | ||
− | Also, <math>\angle BAT = 180^\circ - \angle BAP</math>, and <math>\angle ABR = 180^\circ - \angle ABP</math>. Hence, \begin{align*} | + | Also, <math>\angle BAT = 180^\circ - \angle BAP</math>, and <math>\angle ABR = 180^\circ - \angle ABP</math>. Hence, <math>\begin{align*} |
\angle AOB &= 180^\circ - \angle BAO - \angle ABO \\ | \angle AOB &= 180^\circ - \angle BAO - \angle ABO \\ | ||
&= 180^\circ - \frac{\angle BAT}{2} - \frac{\angle ABR}{2} \\ | &= 180^\circ - \frac{\angle BAT}{2} - \frac{\angle ABR}{2} \\ | ||
&= 180^\circ - \frac{180^\circ - \angle BAP}{2} - \frac{180^\circ - \angle ABP}{2} \\ | &= 180^\circ - \frac{180^\circ - \angle BAP}{2} - \frac{180^\circ - \angle ABP}{2} \\ | ||
&= \frac{\angle BAP + \angle ABP}{2}. | &= \frac{\angle BAP + \angle ABP}{2}. | ||
− | \end{align*} | + | \end{align*}</math> |
Finally, from triangle <math>ABP</math>, <math>\angle BAP + \angle ABP = 180^\circ - \angle APB = 180^\circ - 40^\circ = 140^\circ</math>, so <cmath>\angle AOB = \frac{\angle BAP + \angle ABP}{2} = \frac{140^\circ}{2} = \boxed{70^\circ}.</cmath> | Finally, from triangle <math>ABP</math>, <math>\angle BAP + \angle ABP = 180^\circ - \angle APB = 180^\circ - 40^\circ = 140^\circ</math>, so <cmath>\angle AOB = \frac{\angle BAP + \angle ABP}{2} = \frac{140^\circ}{2} = \boxed{70^\circ}.</cmath> |
Revision as of 11:36, 1 August 2020
Solution 1
First, from triangle , . Note that bisects (to see this, draw radii from to and creating two congruent right triangles), so . Similarly, .
Also, , and . Hence, $\begin{align*} \angle AOB &= 180^\circ - \angle BAO - \angle ABO \\ &= 180^\circ - \frac{\angle BAT}{2} - \frac{\angle ABR}{2} \\ &= 180^\circ - \frac{180^\circ - \angle BAP}{2} - \frac{180^\circ - \angle ABP}{2} \\ &= \frac{\angle BAP + \angle ABP}{2}. \end{align*}$ (Error compiling LaTeX. Unknown error_msg)
Finally, from triangle , , so