Difference between revisions of "2018 AIME I Problems/Problem 4"
m (→Solution 3) |
Bluebacon008 (talk | contribs) (→Solution 1) |
||
Line 2: | Line 2: | ||
In <math>\triangle ABC, AB = AC = 10</math> and <math>BC = 12</math>. Point <math>D</math> lies strictly between <math>A</math> and <math>B</math> on <math>\overline{AB}</math> and point <math>E</math> lies strictly between <math>A</math> and <math>C</math> on <math>\overline{AC}</math>) so that <math>AD = DE = EC</math>. Then <math>AD</math> can be expressed in the form <math>\dfrac{p}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Find <math>p+q</math>. | In <math>\triangle ABC, AB = AC = 10</math> and <math>BC = 12</math>. Point <math>D</math> lies strictly between <math>A</math> and <math>B</math> on <math>\overline{AB}</math> and point <math>E</math> lies strictly between <math>A</math> and <math>C</math> on <math>\overline{AC}</math>) so that <math>AD = DE = EC</math>. Then <math>AD</math> can be expressed in the form <math>\dfrac{p}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Find <math>p+q</math>. | ||
− | ==Solution 1== | + | ==Solution 1 (No Trig)== |
<center> | <center> | ||
<asy> | <asy> | ||
Line 35: | Line 35: | ||
</center> | </center> | ||
− | We draw the altitude from <math>B</math> to <math>\overline{AC}</math> to get point <math>F</math>. We notice that the triangle's height from <math>A</math> to <math>\overline{BC}</math> is 8 because it is a <math>3-4-5</math> Right Triangle. To find the length of <math>\overline{BF}</math>, we let <math>h</math> | + | We draw the altitude from <math>B</math> to <math>\overline{AC}</math> to get point <math>F</math>. We notice that the triangle's height from <math>A</math> to <math>\overline{BC}</math> is 8 because it is a <math>3-4-5</math> Right Triangle. To find the length of <math>\overline{BF}</math>, we let <math>h</math> represent <math>\overline{BF}</math> and set up an equation by finding two ways to express the area. The equation is <math>(8)(12)=(10)(h)</math>, which leaves us with <math>h=9.6</math>. We then solve for the length <math>\overline{AF}</math>, which is done through pythagorean theorm and get <math>\overline{AB}</math> = <math>2.8</math>. We can now see that <math>\triangle ABF</math> is a <math>7-24-25</math> Right Triangle. Thus, we set <math>\overline{AG}</math> as <math>5-</math><math>\tfrac{x}{2}</math>, and yield that <math>\overline{AD}</math> <math>=</math> <math>(</math> <math>5-</math> <math>\tfrac{x}{2}</math> <math>)</math> <math>(</math> <math>\tfrac{25}{7}</math> <math>)</math>. Now, we can see <math>\overline{BD}</math> <math>= 10-x</math>, so we have <math>\overline{AB}</math> <math>=10=</math> <math>10-x+</math> <math>(</math> <math>5-</math> <math>\tfrac{x}{2}</math> <math>)</math> <math>(</math> <math>\tfrac{25}{7}</math> <math>)</math>. Solving this equation, we yield <math>39x=250</math>, or <math>x=</math> <math>\tfrac{250}{39}</math>. Thus, our final answer is <math>250+39=\boxed{289}</math>. |
~bluebacon008 | ~bluebacon008 | ||
Revision as of 12:39, 8 March 2018
Problem 4
In and . Point lies strictly between and on and point lies strictly between and on ) so that . Then can be expressed in the form , where and are relatively prime positive integers. Find .
Solution 1 (No Trig)
We draw the altitude from to to get point . We notice that the triangle's height from to is 8 because it is a Right Triangle. To find the length of , we let represent and set up an equation by finding two ways to express the area. The equation is , which leaves us with . We then solve for the length , which is done through pythagorean theorm and get = . We can now see that is a Right Triangle. Thus, we set as , and yield that . Now, we can see , so we have . Solving this equation, we yield , or . Thus, our final answer is . ~bluebacon008
Solution 2 (Law of Cosines)
As shown in the diagram, let denote . Let us denote the foot of the altitude of to as . Note that can be expressed as and is a triangle . Therefore, and . Before we can proceed with the Law of Cosines, we must determine . Using LOC, we can write the following statement: Thus, the desired answer is ~ blitzkrieg21
Solution 3
In isosceles triangle, draw the altitude from onto . Let the point of intersection be . Clearly, , and hence .
Now, we recognise that the perpendicular from onto gives us two -- triangles. So, we calculate and
. And hence,
Inspecting gives us Solving the equation gives
~novus677
See Also
2018 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.