Difference between revisions of "2018 AMC 10B Problems/Problem 12"

(See Also)
Line 6: Line 6:
 
Let <math>A=(-12,0),B=(12,0)</math>. Therefore, <math>C</math> lies on the circle with equation <math>x^2+y^2=144</math>. Let it have coordinates <math>(x,y)</math>. Since we know the centroid of a triangle with vertices  with coordinates of <math>(x_1,y_1),(x_2,y_2),(x_3,y_3)</math> is <math>\left(\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3}\right)</math>, the centroid of <math>\triangle ABC</math> is <math>\left(\frac{x}{3},\frac{y}{3}\right)</math>. Because <math>x^2+y^2=144</math>, we know that <math>\left(\frac{x}{3}\right)^2+\left(\frac{y}{3}\right)^2=16</math>, so the curve is a circle centered at the origin. Therefore, its area is <math>16\pi\approx \boxed{\text{(C) }50}</math>.
 
Let <math>A=(-12,0),B=(12,0)</math>. Therefore, <math>C</math> lies on the circle with equation <math>x^2+y^2=144</math>. Let it have coordinates <math>(x,y)</math>. Since we know the centroid of a triangle with vertices  with coordinates of <math>(x_1,y_1),(x_2,y_2),(x_3,y_3)</math> is <math>\left(\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3}\right)</math>, the centroid of <math>\triangle ABC</math> is <math>\left(\frac{x}{3},\frac{y}{3}\right)</math>. Because <math>x^2+y^2=144</math>, we know that <math>\left(\frac{x}{3}\right)^2+\left(\frac{y}{3}\right)^2=16</math>, so the curve is a circle centered at the origin. Therefore, its area is <math>16\pi\approx \boxed{\text{(C) }50}</math>.
 
-tdeng
 
-tdeng
 +
 +
==Solution 2 (no coordinates)==
 +
We know the centroid of a triangle splits the medians into segments of ratio 2:1 and the median of the triangle that goes to the center of the circle is the radius (<math>12</math>), so the length from the centroid of the triangle to the center of the circle is always <math>\dfrac{1}{3} \cdot 12 = 4</math>. The area of a circle with radius <math>4</math> is <math>16\pi</math>, or around <math>\boxed{\textbf{(C)} \text{ 50}}</math>.
 +
-That_Crazy_Book_Nerd
  
 
==See Also==
 
==See Also==

Revision as of 16:01, 16 February 2018

Line segment $\overline{AB}$ is a diameter of a circle with $AB=24$. Point $C$, not equal to $A$ or $B$, lies on the circle. As point $C$ moves around the circle, the centroid (center of mass) of $\triangle{ABC}$ traces out a closed curve missing two points. To the nearest positive integer, what is the area of the region bounded by this curve?

$\textbf{(A)} \text{ 25} \qquad \textbf{(B)} \text{ 38} \qquad \textbf{(C)} \text{ 50} \qquad \textbf{(D)} \text{ 63} \qquad \textbf{(E)} \text{ 75}$

Solution

Let $A=(-12,0),B=(12,0)$. Therefore, $C$ lies on the circle with equation $x^2+y^2=144$. Let it have coordinates $(x,y)$. Since we know the centroid of a triangle with vertices with coordinates of $(x_1,y_1),(x_2,y_2),(x_3,y_3)$ is $\left(\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3}\right)$, the centroid of $\triangle ABC$ is $\left(\frac{x}{3},\frac{y}{3}\right)$. Because $x^2+y^2=144$, we know that $\left(\frac{x}{3}\right)^2+\left(\frac{y}{3}\right)^2=16$, so the curve is a circle centered at the origin. Therefore, its area is $16\pi\approx \boxed{\text{(C) }50}$. -tdeng

Solution 2 (no coordinates)

We know the centroid of a triangle splits the medians into segments of ratio 2:1 and the median of the triangle that goes to the center of the circle is the radius ($12$), so the length from the centroid of the triangle to the center of the circle is always $\dfrac{1}{3} \cdot 12 = 4$. The area of a circle with radius $4$ is $16\pi$, or around $\boxed{\textbf{(C)} \text{ 50}}$. -That_Crazy_Book_Nerd

See Also

2018 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png